
extended
abstracts

The third international workshop
on dynamic scheduling problems

PoznaŃ 2021

ADAM MICKIEWICZ UNIVERSITY, POZNAŃ
Faculty of Mathematics and Computer Science
July 5th– 6th, 2021, PoznaŃ, POLAND

This book contains extended abstracts of a plenary lecture and papers presented at the
Third International Workshop on Dynamic Scheduling Problems, July 5th–6th, 2021,
Poznań, Poland.

© 2021 by the Polish Mathematical Society and the Authors

This work is subject to copyright. All rights reserved.

Layout and cover design by Bartłomiej Przybylski
Edited by Stanisław Gawiejnowicz

ISBN: 978-83-951298-8-9 (printed version)
ISBN: 978-83-951298-6-5 (eBook)
ISBN: 978-83-951298-9-6 (printed version + eBook)

Publisher:

Polish Mathematical Society
Śniadeckich 8, 00-956 Warsaw
Poland

Welcome to IWDSP 2021
Dear participant,

on behalf of the Programme and Local Committees, I am pleased to welcome you
to IWDSP 2021, the Third International Workshop on Dynamic Scheduling Prob-
lems, and to the Faculty of Mathematics and Computer Science, Adam Mickiewicz
University in Poznań, which is the host of this event.

The IWDSP 2021 workshop is the third event in the series started in 2016 with
IWDSP 2016 and continued two years later with IWDSP 2018. Both the workshops
attracted the authors from Australia, Belarus, Belgium, Canada, France, Germany,
Israel, Poland, P. R. China, Russian Federation, Taiwan and United Kingdom. Books
of extended abstracts of the papers presented by the authors on the workshops are
available at the Web sites https://iwdsp2016.wmi.amu.edu.pl and https://
iwdsp2018.wmi.amu.edu.pl, respectively. Selected revised papers presented at
the IWDSP 2018 workshop have also been published in issue no. 6 of volume 23 of
the Journal of Scheduling, see https://link.springer.com/journal/10951/
volumes-and-issues/23-6 for details.

The present workshop was originally planned to be held in 2020 but the outbreak
of the COVID-19 pandemic postponed it for a year. In view of the uncertainty caused
by the pandemic, the workshop is planned as an online event.

IWDSP 2021, similarly as the previous two workshops in the series, focuses on
dynamic scheduling problems de�ned by parameters whose values are varying in time.
Problems of this kind appear in many applications. The most common examples are
scheduling problems with time-, position- and resource-dependent job processing
times. The aim of this workshop is to present the recent research in this important
domain of scheduling theory.

The Program Committee, supported by the members of the Advisory Committee
and external reviewers, selected for presentation at IWDSP 2021 papers submitted by
the authors from Egypt, Germany, India, Israel, Poland, P. R. China and the United
States. These papers, together with a plenary lecture on dynamic opponent choice in
sport tournaments, allowed the Program Committee to prepare an attractive scienti�c
program of the event.

I wish you a fruitful workshop, expressing the hope that you will �nd IWDSP 2021
stimulating for your further research.

Stanisław Gawiejnowicz
The Chair of the Program Committee

The Chair of the Local Committee

3

Committees

Committees

Program Committee

Stanisław GAWIEJNOWICZ (Chair), Adam Mickiewicz University Poznań, Poznań, Poland

Gur MOSHEIOV, Hebrew University of Jerusalem, Jerusalem, Israel

Advisory Committee

Alessandro AGNETIS, University of Siena, Siena, Italy

Evripidis BAMPIS, Sorbonne University, Paris, France

Hans KELLERER, University of Graz, Graz, Austria

Tamás KIS, Institute for Computer Science and Control, Budapest, Hungary

Alexander V. KONONOV, Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Mikhail Y. KOVALYOV, United Institute of Informatics Problems, Minsk, Belarus

Minming LI, City University of Hong Kong, Hong Kong, P. R. China

Bertrand M-T. LIN, National Chiao Tung University, Hsinchu, Taiwan

Nicole MEGOW, University of Bremen, Bremen, Germany

Michael L. PINEDO, Stern School of Business, New York University, New York, USA

Dvir SHABTAY, Ben-Gurion University of the Negev, Beer Sheva, Israel

Local Committee

Joanna BERLIŃSKA, Adam Mickiewicz University Poznań

Stanisław GAWIEJNOWICZ (Chair), Adam Mickiewicz University Poznań

Bartłomiej PRZYBYLSKI, Adam Mickiewicz University Poznań

Marcin ŻUROWSKI, Adam Mickiewicz University Poznań

7

Contents

Welcome to IWDSP 2021 3

Committees 7

Programme 13

Plenary lecture 17

Dynamic opponent choice in tournaments
Nicholas G. Hall 17

Extended abstracts 27

Scheduling in data gathering networks with variable communication speed and
a processing stage
Joanna Berlińska, Baruch Mor 27

New results in time-dependent open shop scheduling
Stanisław Gawiejnowicz, Marta Kolińska 33

On the complexity of conditional DAG scheduling
Alberto Marchetti-Spaccamela, Nicole Megow, Jens Schlöter, Martin Skutella,
Leen Stougie 39

Single machine scheduling with step-learning
Baruch Mor, Gur Mosheiov 47

Consideration of routine losses due to intermittent production inflow shop schedul-
ing
Frederik Ostermeier 51

Dual-criticality scheduling onnon-preemptive, dynamic processors usingRLagents
Nourhan Sakr, Youssef Hussein, Karim Farid 57

9

10 The Third International Workshop on Dynamic Scheduling Problems

A lower bound for sequentially placing boxes at themoving assembly line tomin-
imize walking time
Helmut A. Sedding 63

Heuristic algorithms for solving hard scheduling problemswith positional penal-
ties and controllable processing times
Dvir Shabtay, Baruch Mor, Liron Yedidsion 71

Relative robust total completion time scheduling problem on a single machine
Prabha Sharma, Diptesh Ghosh, Sandeep Singh 77

An exact algorithm for a two-machine time-dependent scheduling problem
Weronika Skowrońska, Stanisław Gawiejnowicz 83

Two-agent schedulingwith position-dependent processing times and job rejection
Xiaowen Song, Cuixia Miao, Xiaoxu Song 89

Scheduling with periodic availability constraints to minimize makespan
Lishi Yu, Zhiyi Tan 93

Indexes 101

Programme

Monday, July 5th, 2021

08:30 – 09:00 Opening
09:00 – 10:20 Session no. 1

Speakers: Dvir Shabtay, Joanna Berlińska
Chair: Gur Mosheiov

10:20 – 10:40 Co�ee break
10:40 – 12:00 Session no. 2

Speakers: Lishi Yu, Jens Schlötter
Chair: Stanisław Gawiejnowicz

12:00 – 14:00 Lunch break
14:00 – 15:20 Session no. 3

Speakers: Cuixia Miao, Helmut A. Sedding
Chair: Prabha Sharma

15:20 – 15:40 Co�ee break
15:40 – 17:10 Plenary lecture

Speaker: Nicholas G. Hall
Chair: Stanisław Gawiejnowicz

Tuesday, July 6th, 2021

09:00 – 10:20 Session no. 4
Speakers: Gur Mosheiov, Weronika Skowrońska
Chair: Stanisław Gawiejnowicz

10:20 – 10:40 Co�ee break
10:40 – 12:00 Session no. 5

Speakers: Stanisław Gawiejnowicz, Prabha Sharma
Chair: Gur Mosheiov

12:00 – 14:00 Lunch break
14:00 – 15:20 Session no. 6

Speakers: Frederik Ostermeier, Nourhan Sakr
Chair: Dvir Shabtay

15:20 – 15:40 Co�ee break
15:40 – 16:00 Closing

13

Plenary lecture

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Dynamic opponent choice in tournaments*

Nicholas G. Hall∗∗
Fisher College of Business, The Ohio State University, USA

Keywords: multiple round sports tournament, choice of opponent, performance
criteria, professional tennis data

1 Introduction
We consider multiple round tournaments, as used extensively to organize sports events
worldwide. Since our work can be applied to both individual and team tournaments,
we use the term player to describe either an individual player or a team. Many multiple
round tournaments consist of a preliminary or group stage, followed by several rounds
of single elimination play using a �xed seeding or bracket. This design is used by, for
example, most U.S. major sports, the FIFA World Football Cup, and the ICC World
Cricket Cup. The objectives of the designers of such tournaments include: providing
the players with equally fair opportunities, motivating them to perform well, selecting
among them, and providing an appealing event for spectators.

In this lecture, we discuss a few de�ciencies that arise in such tournaments with
respect to these objectives. First, top ranked players randomly incur unfortunate match-
ups against other players, which introduces an unnecessary element of luck into the
tournament. We believe that the achievement of a top ranking at the preliminary
stage should not disadvantage a player based on chance. Second, as documented in
the tournament design literature discussed below, various reasonable criteria such
as stronger ranked players having a higher probability of winning, are not satis�ed.
Third, the probability that the top two players meet is not maximized. Fourth, there
is the widely observed issue of shirking or tanking at the preliminary stage, where a
player deliberately avoids winning a game, in order to obtain an easier path through
the tournament. This occurs where a preliminary stage match can be lost, but the
player continues to the next round anyway. This creates situations where a player has
an incentive to shirk, in order to play easier opponents at later rounds. Finally, the
use of a conventional �xed bracket fails to allow players to consider information that
develops during the tournament, such as injuries to other players. The conventional
�xed bracket design does not allow for this developing information to be used.

*Joint work with Zhixin Liu (College of Business, University of Michigan – Dearborn, USA)
∗∗Speaker, e-mail: hall.33@osu.edu

DOI: 10.14708/isbn.978-83-951298-6-5p17-24

17

To address these de�ciencies of conventional tournament design, we propose a new
design under which the players, in ranked order that is at least initially determined at
the preliminary stage, choose their next opponent at each single elimination round. This
choice is made under the two conditions: (i) the opponent has not been previously
chosen by a higher seeded player, and (ii) the player has itself not been previously
chosen. This opponent choice design allows considerable �exibility in implementation.
For example, we study the performance of two versions: under static ranking, the
ranking of the players when they entered the single elimination stage of the tournament
remains �xed; whereas under dynamic ranking, a lower ranked player inherits the
ranking of a higher ranked player which it beats. Flexibility is also available regarding
the number of player(s) from the top of the ranking which are allowed to choose their
opponent(s).

Similar solutions are used in contemporary tournament practice. Several tourna-
ments currently include opportunities for opponent choice: The EBEL Austrian Ice
Hockey League, The Southern Professional Hockey League (U.S.), The U.S. Bridge
Federation, The PRO Chess League. In addition, Inside Hook [5] provides details of
a preliminary proposal to expand the U.S. Major League Baseball playo�s to include
additional teams, and permit higher ranked teams to choose their opponents.

2 Related literature review
For any tournament, the positioning of the variously ranked players allows for alter-
native bracket designs. This problem of bracket design, or seeding problem, has been
extensively discussed in the literature. Below, we brie�y review the main related works.

Glenn [1] compares all possible brackets with four players, to evaluate the proba-
bility that each player will win, and the expected number of games. Searls [6] extends
this analysis to eight players by comparing single and double elimination tournament
designs, under single game and best-of-three-games formats. He �nds that double
elimination with best-of-three-games format provides the highest probability for the
best player to win and the highest expected number of games.

Horen and Riezman [4] compare di�erent brackets for multiple round single
elimination tournaments where the pairwise win probability matrix satis�es properties
that enable the players to be ranked in a natural way, which we term a medium ranking.
They apply four fairness criteria: (i) does the bracket maximize the probability that
the best player wins the tournament? (ii) is it order preserving, i.e., no stronger player
has a lower probability of winning the tournament than a weaker player? (iii) does
it maximize the probability that the best two teams meet in the �nal, and (iv) does
it maximize the expected value of the winning team? For tournaments with four
players, there are only three distinct brackets, and the conventional matchup of the
strongest and weakest players at the semi�nal round is the unique one that satis�es

18 The Third International Workshop on Dynamic Scheduling Problems

criteria (i) – (iv). For tournaments with eight players, there are 315 distinct brackets.
Criterion (i) is satis�ed by eight of them, but for criterion (ii) no bracket is satisfactory.

Vu and Shoham [8] make the stronger assumption that, for any pair of players,
playerPi has a higher probability than playerPj of beating every other player. We denote
this situation as the existence of a strong ranking. They show that, for a tournament
with eight or more players, no bracket tournament design can guarantee this criterion
for an arbitrary win probability matrix.

Vong [7] considers the problem of strategic manipulation in multiple round tour-
naments. His de�nition of strategic manipulation is more general than shirking. Specif-
ically, a tournament that is free of strategic manipulation is characterized as one where
(i) full e�ort exists as a subgame perfect equilibrium, and (ii) each such equilibrium
coincides with the outcome from a full-e�ort social choice function. It is shown that
allowing only the top-ranked player from each group to advance to the next round of
the tournament is both necessary and su�cient to achieve these properties, under an
arbitrary sorting rule that sorts qualifying players from one stage to the next. However,
as Vong [7] notes, eliminating all but one player from every group would quickly reduce
interest in the tournament and disappoint spectators who have traveled far to watch
the event, as at the FIFA World Football Cup.

Guyon [2] proposes the use of a global ranking at the elimination stage to remove
group advantage, for tournaments where the number of groups is not a power of 2.
Under this ranking, all teams that are quali�ed for the elimination stage are ranked
one after another based on performance at the group stage. The proposed model is
used by UEFA to modify the elimination bracket in the 2020 UEFA Euro Football
Championship to minimize group advantage.

Guyon [3] proposes a tournament design where the players are ranked based on
their earlier performance. Then, in ranked order, the surviving players choose their
opponents at the next round. He also considers a variant in which players in the top half
of the ranking cannot be chosen by others. Within the context of a football tournament,
the ranking is established �rst by points and then in the event of ties, by goal di�erence.
Assuming that the tournament designer has the objective of maximizing the number of
games that take place within the home country of a player, he applies three variations
of this design to data for the 2020 UEFA Euro Football Championship.

The work presented in this lecture di�ers from that of Guyon [3] in several ways.
First, we consider dynamic rankings based on beating higher ranked players during
the single elimination stage. Second, we consider various levels of information about
pairwise win probabilities. Third, we make the natural assumption that each player
chooses its opponents to maximize its tournament win probability. Fourth, we evaluate
the results of the opponent choice design against the three reasonableness criteria
described by Horen and Riezman [4]. Finally, we establish anti-shirking results that are
maximal, relative to the result of Vong [7].

July 5th – 6th, 2021, Poznań, Poland 19

3 Opponent choice algorithm
We consider a tournament consisting of a preliminary stage, followed by a single elimi-
nation stage. The opponent choice is made using the following two rules:

1. Players compete in a preliminary stage, possibly lasting up to an entire season,
that establishes a weak ranking among them.

2. Players compete in multiple rounds of single elimination play, by �rst choosing
their opponent in weakly ranked order at each round.

Our algorithm for �nding the optimal sequence of opponent choices in a tour-
nament, Algorithm Opponent Choice, may be formulated as follows. Let Sa denote
the set of all the players. For a given set S of players with relative rankings 1, . . . , |S|
and respective original rankings (1), . . . , (|S|), let Q(S) denote the corresponding
tournament win probabilities of the players, given all players’ optimal choices of op-
ponents. Under the notation, at the input of our algorithm are given probabilities pij
for i, j = 1, . . . , N ,N = 2n, i 6= j. Value functionQ(S) ≡ {qS,(1), . . . , qS,(|S|)},
and optimal solution value isQ(Sa).

When |S| = 2, i.e, only two players with relative rankings 1 and 2, we have
qS,(1) = p(1)(2) and qS,(2) = p(2)(1), where (1) and (2) are the two players’ original
rankings. Hence we assume that, for anyS ∈ Sa, |S| = 2, 4, . . . , N/2, we have found
Q(S) = {qS,(1), . . . , qS,(|S|)}.

Further, when S = Sa and the opponent of each player is decided, there are 2N/2

possible sets of theN/2 winners. De�ne ordered sets X and X′ such that players in set
X play against players in setX′ in the �rst round, in the same order as in their respective
sets, where |X| = |X′| = N/2.

Let Ω(X,X′) denote the collection of all possible sets of winners, and pS denote
the probability of the occurrence of set S ∈ Ω(X,X′). Then, the tournament win
probability qj = qSa,j of player Pj , j = 1, . . . , N , is:

qSa,j =
∑

S∈Ω(X,X′)

pS qS,j . (1)

At any round, the algorithm works by evaluating all subsets of smaller size before
all subsets of larger size. WhenN − 2 players have their opponents already decided
and two players Pi and Pj , where i < j, do not, player Pi will play player Pj as its
opponent, for any 1 ≤ i < j ≤ N . Next, the algorithm evaluates all subsets of four
players, using the previously computed information for any pair of last two players,
and so on, until the optimal choices of all N players and their win probabilities are
determined. As in the boundary condition, we de�ne ordered sets X and X′ with
|X| = |X′|, such that players in set X play against players in set X′, in the same order

20 The Third International Workshop on Dynamic Scheduling Problems

as in their respective sets. By assumption, the collection of all possible sets of winners
Ω(X,X′) is known for |X| = |X′| ≥ m. Next, we assume that 2m− 2 players have
their opponents decided in ordered sets X and X′ with |X| = |X′| = m− 1.

Let set U contain all the players with undecided opponents, where player Pj has
the highest ranking inU and X∪X′∪U = Sa. Then, playerPj chooses its opponent
to maximize its tournament win probability qj = qSa,j , as follows:

qSa,j = max
i∈U

∑

S∈Ω(X∪{j},X′∪{i})
pS qS,j , (2)

where Ω(X∪{j},X′∪{i}) is known by assumption in view of equalities |X∪{j}| =
|X′ ∪ {j}| = m.

During the lecture, we will show that the following result holds.

Theorem 1. Algorithm Opponent Choice finds the optimal sequence of opponent choices
for allN = 2n players, and their tournament win probabilities,
inO(2

∑n
h=2 2h−1 ∏n

l=2

∏2l−1

h=1 (2l − 2h+ 1)) time.

4 Win probabilities by seeding
Using the seeding of the tennis players as the ranking, we compute the tournament win
probabilities of the various players at the semi�nal and quarter�nal rounds and round-
of-16, as shown in Tables 1, 2 and 3, respectively. These probabilities are computed by
assuming that the highest ranked player(s) select the opponent(s) that maximize their
tournament win probability. For example, at the semi�nal round, the no. 1 seed has a
tournament win probability of 0.391 if choosing to play the no. 4 seed, compared to
0.366 against the no. 2 seed, and 0.386 against the no. 3 seed; it therefore chooses to play
the no. 4 seed. The other semi�nal match is then between the nos. 2 and 3 seeds. In
Table 1, the various players have identical tournament win probabilities for the bracket
design and the opponent choice design.

Table 1. Tournament win probabilities for seeded tennis players at semi�nal round

Seed i 1 2 3 4
Opponent i 4 3 2 1

qi .391 .353 .124 .132

Table 2 contains quarter�nal results, where qDi and qSi are the tournament win
probabilities of player i under dynamic and static rankings of players, respectively. For
the opponent choice design, each player’s quarter�nal round opponent is also shown.

July 5th – 6th, 2021, Poznań, Poland 21

For this example, each player’s quarter�nal round opponents are the same under the
dynamic and static rankings of players. Further, qBi is the tournament win probability
of player i using the conventional quarter�nal round bracket (1, 8, 4, 5, 3, 6, 2, 7). We
discuss the results in Table 2. For this instance, seeds nos. 1 and 2 both gain substantially
from the opponent choice design, by being able to choose their opponents. However,
seeds no. 3 and 4 have a lower tournament win probability, due to the chance of being
chosen by a higher ranked player which does not occur at the quarter�nal round under
a conventional bracket design. Seed no. 8 gains under the opponent choice design
because seed no. 1 is not necessarily its quarter�nal opponent.

Table 2. Tournament win probabilities
for seeded tennis players at quarter�nal round

Seed i 1 2 3 4 5 6 7 8
Opponent 7 4 6 2 8 3 1 5

qDi .342 .242 .101 .078 .049 .064 .039 .085
qSi .342 .242 .107 .078 .050 .064 .037 .080
qBi .315 .201 .121 .109 .081 .072 .044 .056

Table 3. Tournament win probabilities
for seeded tennis players at round-of-16

Seed i 1 2 3 4 5 6 7 8
Opponent 14 12 15 16 13 11 10 9

qDi .337 .223 .086 .080 .056 .047 .031 .036
qSi .336 .232 .089 .085 .057 .047 .030 .035
qBi .313 .228 .073 .079 .056 .050 .035 .037

Seed i 9 10 11 12 13 14 15 16
Opponent 8 7 6 2 5 1 3 4

qDi .023 .016 .020 .009 .012 .009 .009 .007
qSi .021 .014 .020 .008 .010 .005 .006 .006
qBi .025 .017 .021 .013 .013 .011 .010 .018

Table 3 contains round-of-16 results in similar format. For this instance, using
the opponent choice design, each player’s round-of-16 opponents are the same under
dynamic and static rankings of players. The main winner from the opponent choice
design is seed no. 1, due to its �rst-mover advantage. Seeds nos. 3 and 4 bene�t from
the opponent choice design with dynamic ranking, and seeds nos. 2, 3, 4 and 5 bene�t

22 The Third International Workshop on Dynamic Scheduling Problems

from the opponent choice design with static ranking. The bene�t which they receive is
paid for quite evenly by seeds nos. 6 through 16.

A particularly interesting case is seed no. 14, which is chosen by seed no. 1. This
di�cult matchup reduces its tournament win probability from .011 using the bracket
design to .005 using the opponent choice design under the static ranking, but only to
0.009 under the dynamic ranking. The di�erence in these last two numbers results
from the possibility that, by beating seed no. 1, seed no. 14 achieves the no. 1 ranking at
the quarter�nal round under the dynamic ranking.

5 Future research

Several interesting topics remain open for future research. We particularly recommend
the following seven. The �rst topic applies our work, and the other six extend it.

First, it would be valuable to explore the application of the opponent choice design
to empirically-based studies of various sports and competitions. Examples where sub-
stantial data for pairwise matchups is available include table tennis and chess. Second,
in situations where the pairwise win probabilities are hard to estimate, especially when
there are many players involved, a player may resort to a myopic strategy: choose an
available opponent which it can beat with highest probability at each round. Third,
it would be valuable to study how the results of a particular round could be used to
modify the win probability matrix, and consequently the choices of the players at later
rounds. For example, a player which has won its matches but with unexpectedly poor
performances may become a more attractive opponent at a later round. Fourth, as
proposed by Guyon [3], prohibiting the choice of other highly ranked players. Fifth,
the opponent choice design can also be used where a player’s objective, rather than
winning the entire tournament, is to reach a particular round. This scenario arises
towards the end of a season, where a player which is seeking to be ranked �rst at the
end of the season needs only to reach a particular round. The sequence of choices of
opponents that maximizes the probability of reaching a particular round is not, in
general, the same as that which maximizes the player’s tournament win probability.
Sixth, a natural extension of the opponent choice design under dynamic ranking would
be to allow the ranking of the players to be adjusted dynamically, based on detailed
performance within the tournament, as measured for example by margin of victory.
Finally, the group-strategy-proofness of the proposed design can be studied.

References

[1] W. A. Glenn, A comparison of the e�ectiveness of tournaments, Biometrika,
47 (1960), 253–262, doi: 10.2307/2333297.

July 5th – 6th, 2021, Poznań, Poland 23

[2] J. Guyon, What a fairer 24 team UEFA Euro could look like, Journal of Sports
Analytics, 4 (2018), 297–317, doi: 10.3233/JSA-180219.

[3] J. Guyon, “Choose your opponent”: A new knockout format for sports tour-
naments. Application to the round of 16 of the UEFA Champions League and
to maximize the number of home games during the UEFA Euro 2020, working
paper, Columbia University, Courant Institute of Mathematical Sciences, New
York University, NY, 2019, doi: 10.2139/ssrn.3488832.

[4] J. Horen, R. Riezman, Comparing draws for single elimination tournaments,
Operations Research, 33(1985), 249–262, doi: 10.1287/opre.33.2.249.

[5] Inside Hook. MLB considering controversial reality TV-inspired play-
o� expansion. Available at: https://www.insidehook.com/-

daily brief/sports/mlbconsidering-controversial-reality--

tv-inspired-playoff-expansion, last accessed February 20, 2020.

[6] D. T. Searls, On the probability of winning with di�erent tournament procedures,
Journal of the American Statistical Association, 58 (1963), 1064–1081, doi: 10.

2307/2283333.

[7] A. I. K. Vong, Strategic manipulation in tournament games, Games and Economic
Behavior, 102 (2017), 562–567, doi: 10.1016/j.geb.2017.02.011.

[8] T. Vu, Y. Shoham, Fair seeding in knockout tournaments, ACMTransactions on
Intelligent Systems & Technologies, 3 (2011), article 9, doi: 10.1145/2036264.

2036273.

24 The Third International Workshop on Dynamic Scheduling Problems

Extended abstracts

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Scheduling in data gathering networks with variable
communication speed and a processing stage

Joanna Berlińska∗
Adam Mickiewicz University, Poznań, Poland

Baruch Mor
Ariel University, Ariel, Israel

Keywords: scheduling, data gathering networks, variable communication speed

1 Introduction
Data gathering is an important step of many applications running in distributed systems.
Computation results scattered on a large number of workers have to be collected for
merging and analysis. Algorithms minimizing the total time of data gathering were
proposed by Berlińska for networks with limited base station memory in [1], and for
networks with dataset release times in [3]. Luo et al. [7] and Luo et al. [8] studied
minimizing the data gathering time in networks with data compression. Berlińska and
Przybylski [4] analyzed the problem for networks with local computations. All the
mentioned articles share the assumption that the communication parameters of the
network are constant. However, in reality, the communication speed may change with
time, due to sharing the links with other users and applications, maintenance activities,
etc. Scheduling in data gathering networks with variable communication speed was
studied by Berlińska [2]. The analyzed problem was to transfer the data from the
workers to a single base station in the shortest possible time. In this work, we generalize
this problem to the case when each dataset has to be processed after being received
by the base station. We show that minimizing the total time of data gathering and
processing is stronglyNP -hard. Polynomial-time algorithms are proposed for several
special cases of the problem. For the general case, heuristic algorithms are designed and
compared by means of computational experiments.

2 Problem formulation
We study a star data gathering network consisting of m workers P1, . . . , Pm and a
single base station P0. Each worker Pi holds dataset Di of size αi, which has to be

∗Speaker, e-mail: Joanna.Berlinska@amu.edu.pl

DOI: 10.14708/isbn.978-83-951298-6-5p27-32

27

transferred to the base station for processing. At most one node can communicate
with the base station at a time. The communication rate of node Pi depends on the
corresponding link being used by other applications. We will be calling a link loaded
if it is used by background communications at a given time, and free in the opposite
case. Transferring one unit of data from Pi to P0 over a free link takes time ci, for
i = 1, . . . ,m. A loaded link becomes δ times slower, for some �xed rational δ > 1.
Thus, sending a unit of data over a loaded link betweenPi andP0 takes time δci. After
being received by the base station, dataset Di has to be processed, which takes time
aαi. At most one dataset can be processed at a time. Preemptions are allowed both in
communication and computations.

The maximum time that may be necessary to gather data from all worker nodes
is Tc = δ

∑m
i=1 ciαi. The communication speed changes are described in the follow-

ing way. For each node Pi, we are given a set of ni disjoint time intervals [t′i,j , t
′′
i,j)

(where j = 1, . . . , ni, t′′i,j < t′i,j+1 for j < ni, and t′i,ni
< Tc), in which the

corresponding communication link is loaded. The total number of such intervals is
n1 + · · ·+ nm = n.

The scheduling problem is to minimize the total time T needed to gather and
process all data. It is obvious that nothing can be gained by introducing idle times in
communication. Moreover, for a �xed communication schedule, the order of process-
ing the datasets and possible processing preemptions do not a�ect T , as long as no
unnecessary idle times appear. Therefore, we assume without loss of generality that the
communication network is never idle before transferring all data and that the datasets
are processed in the order in which they arrive at the base station.

3 Computational complexity
In this section, we analyze the computational complexity of our problem and its special
cases. Due to limited space, longer proofs are omitted.

The following complexity result is achieved by a pseudopolynomial reduction from
the stronglyNP -complete 3-Partition problem (Garey and Johnson [5]).

Proposition 1. The analyzed scheduling problem is stronglyNP -hard, even if a = 1
and ci = 1 for i = 1, . . . ,m.

In the next proposition, we show the main di�culty in constructing exact algo-
rithms for our problem.

Proposition 2. Constructing an optimum schedule for the analyzed problem may
require preempting a dataset transfer at a time when no link speed changes.

Proof. Let m = 2, c1 = c2 = 1, a = 0, α1 = α2 = 2, and let δ be an arbitrary
number greater than 1. Suppose the �rst link is loaded in interval [2, 3), and the

28 The Third International Workshop on Dynamic Scheduling Problems

second link is loaded in interval [3, 4). The optimum schedule length 4 can be achieved
only if all data are transferred over free links. For example, dataset D1 can be sent
in intervals [0, 1) and [3, 4), and D2 in interval [1, 3). It is easy to check that if no
preemption takes place before time 2, then a part of one of the datasets has to be sent
over a loaded link.

According to Proposition 2, it is not known which moments should be taken
into account as possible communication preemption points. Thus, constructing a full
search or branch-and bound algorithm for our problem is a challenge.

Note that if the communication links are never loaded, our problem reduces to
F2|pmtn|Cmax, and hence, it can be solved in O(m logm) time using Johnson’s
algorithm (Johnson [6]). If a = 0, which means there is no processing stage, then our
problem is also solvable in polynomial time, using the algorithm by Berlińska [2]. In
order to present other polynomial special cases, we prove a few structural properties.

Proposition 3. If all links are loaded in the same intervals, then the time required to
transfer a given set of datasets {Di1 , . . . , Dik}, starting at time 0, does not depend on
the order of communications.

Proof. Sending data of size α at unit communication time c is equivalent to sending
data of size cα at unit comunication time 1. Hence, if all links are loaded in the
same intervals, sending datasetsDi1 , . . . , Dik over the respective links is equivalent to
sending a single dataset of size

∑k
j=1 cijαij over a link with communication speed 1

in the free intervals and 1/δ in the loaded intervals.

Proposition 4. If all links are loaded in the same intervals, there exists an optimum
non-preemptive schedule.

Proof. Suppose that datasetDi is transferred in several pieces in an optimum schedule
Σ. We construct a new schedule Σ′ by moving all messages containing parts ofDi just
before its last piece. The other communications preceding the transfer ofDi are moved
to the left. Although the transfer times of individual datasets may change during this
process, by Proposition 3 the transfer of each dataset �nishes in Σ′ not later than in
Σ. Hence, dataset processing also �nishes in Σ′ not later than in Σ, and consequently,
Σ′ is an optimum schedule. By repeating this procedure for all datasets sent in several
messages, we arrive at a non-preemptive optimum schedule.

Using Propositions 3 and 4, and the interchange argument, we prove that the
following two special cases of our problem are polynomially solvable.

Proposition 5. If a ≤ ci for all i, and all links are loaded in the same intervals, then
the optimum schedule can be constructed inO(m logm+n) time by sending the datasets
in the order of non-increasing sizes αi.

July 5th – 6th, 2021, Poznań, Poland 29

Proposition 6. If a ≥ δci for all i, and all links are loaded in the same intervals,
then the optimum schedule can be constructed inO(m logm+ n) time by sending the
datasets in the order of non-decreasing ciαi.

4 Heuristics and computational experiments

In this section, we propose greedy heuristics running inO((m+ n)2) time. In each
of these algorithms, every time a dataset transfer completes or the speed of some link
changes, the dataset to be transferred is selected according to a given rule. Algorithm
gTime chooses the dataset whose transfer will complete in the shortest time. Heuristic
gRate selects the dataset which will be sent at the best average communication rate
(under the assumption that there will be no preemption). Algorithm gJohnson associates
with each available dataset a job consisting of two operations: sending the remaining
part of this dataset, and processing this dataset. A job is selected using Johnson’s rule
(Johnson [6]), and the corresponding dataset is transferred.

The makespan obtained by any algorithm that does not introduce communication
idle times is at most δ

∑m
i=1 ciαi + a

∑m
i=1 αi, while the optimum makespan is not

smaller than max{∑m
i=1 ciαi, a

∑m
i=1 αi}. Hence, each of our algorithms delivers a

(δ + 1)-approximation of the optimum solution.
The quality of the results delivered by the proposed heuristics was analyzed by

means of computational experiments. The number of datasets in the test instances
was m ∈ {10, 15, . . . , 50}. Dataset sizes αi were chosen randomly from the range
[1, 20]. Parameter δ was set to 2. The basic communication costs of all links were equal,
ci = c for i = 1, . . . ,m. We used c ∈ {0.5, 0.75, 1} and a = 1, thus representing
the three cases of δc ≤ a, c < a < δc and a ≤ c. The communication speed
changes were generated similarly as those in Berlińska [2]. Namely, for given values
F,L ∈ {1, 5}, the length of the �rst free interval of link iwas selected randomly from
the range [0, Fm

∑m
i=1 ciαi]. Then, the length of the �rst loaded interval was chosen

randomly from the range [0, Lm
∑m

i=1 ciαi]. The lengths of consecutive free and loaded
intervals were being selected until reaching the communication time horizon Tc. For
each analyzed setting, 100 instances were generated and solved.

As the optimum solutions for the generated instances were not known, schedule
quality was measured by the average percentage error with respect to the lower bound
LB computed as follows. Let T (i)

c be the time required to transfer datasetDi (starting
at time 0), and let Tc be the minimum time necessary for transferring all data to the
base station. Note that Tc can be computed using linear programming as described
by Berlińska [2]. Finally, let TJ be the minimum time required for transferring and
processing all datasets under the assumption that the communication links are always

30 The Third International Workshop on Dynamic Scheduling Problems

free, obtained by Johnson’s algorithm. We set

LB = max{LB1, LB2, TJ}, (1)

where
LB1 =

m
max
i=1
{T (i)

c + aαi} (2)

and
LB2 = Tc +

m
min
i=1
{aαi}. (3)

The results of our experiments lead us to the following conclusions:

1. Naturally, the obtained makespans are closest to LB when c and L are small,
and F is large.

2. In general, better results are obtained for large instances than for the smaller ones.
Indeed, a larger number of datasets gives more opportunities to avoid loaded
links, which may result both in �nding better solutions and inLB being closer
to the actual optimum.

3. When communication is slow and the links are rarely free (c = 1 and F = 1),
the best results are delivered by algorithm gRate. The reported errors are below
18% forL = 1, and below 40% forL = 5.

4. In the remaining settings, the best results are usually obtained either by gJohnson
or gTime (the only exception are the tests with c = 0.75, F = 1, L = 5 and
m ≥ 30, for which gRate is the winner). The makespans delivered by the best
of algorithms gJohnson and gTime are, on average, at most 23% from LB for
the most di�cult instances in this group (i.e., when c = 0.75, F = 1,L = 5,
m = 10), but less than 3% fromLB for all tests with c = 0.5.

5 Future research

Future research should include the complexity analysis of the special case when all links
are loaded in the same intervals, but the relations between ci and a are arbitrary, and
the case when a ≥ δci for all i, but di�erent links are loaded in di�erent time intervals.

Acknowledgements

The research of the �rst author was partially supported by the National Science Centre,
Poland, grant 2016/23/D/ST6/00410.

July 5th – 6th, 2021, Poznań, Poland 31

References
[1] J. Berlińska, Heuristics for scheduling data gathering with limited base station

memory, Annals of Operations Research, 285 (2020), 149–159, doi: 10.1007/

s10479-019-03185-3.

[2] J. Berlińska, Scheduling in data gathering networks with background com-
munications, Journal of Scheduling, 23 (2020), 681–691, doi: 10.1007/

s10951-020-00648-5.

[3] J. Berlińska, Makespan minimization in data gathering networks with dataset
release times, Lecture Notes in Computer Science, 12044 (2020), 230–241, doi: 10.

1007/978-3-030-43222-5_20.

[4] J. Berlińska, B. Przybylski, Scheduling for gathering multitype data with local
computations, European Journal of Operational Research, 2021, doi: 10.1016/

j.ejor.2021.01.043.

[5] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness, W. H. Freeman, San Francisco, 1979.

[6] S. M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly, 1 (1954), 61–68, doi: 10.

1002/nav.3800010110.

[7] W. Luo, Y. Xu, B. Gu, W. Tong, R. Goebel, G. Lin, Algorithms for communication
scheduling in data gathering network with data compression, Algorithmica, 80
(2018), 3158–3176, doi: 10.1007/s00453-017-0373-6.

[8] W. Luo, B. Gu, G. Lin, Communication scheduling in data gathering networks
of heterogeneous sensors with data compression: Algorithms and empirical
experiments, European Journal of Operational Research, 271 (2018), 462–473,
doi: 10.1016/j.ejor.2018.05.047.

32 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

New results in time-dependent open shop scheduling

Stanisław Gawiejnowicz∗
Adam Mickiewicz University, Poznań, Poland

Marta Kolińska
Adam Mickiewicz University, Poznań, Poland

Keywords: time-dependent scheduling, deteriorating jobs, open shop, LAPT rule

1 Introduction
We consider open shop scheduling problems with deteriorating jobs, in which we are
given machinesM1,M2, . . . ,Mm and a setJ of independent jobs J1, J2, . . . , Jn to
be scheduled on the machines which are available for processing from time t0 > 0,
where m ∈ {2, 3} and n ≥ m. Any job Jk ∈ J is composed of m operations,
O1k, O2k, . . . , Omk, 1 ≤ k ≤ n, and it is completed if all the operations are com-
pleted. The processing time of the ith operation of the jth job, Oij , proportionally
deteriorates in time and equals pij = bijsij ,where integer deterioration rates bij > 0
for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and sij ≥ t0 denotes the starting time of the op-
eration. Any operation sequence satisfying the problem assumptions is feasible, i.e.
no precedence constraints exist between operations of the same job. The criterion of
schedule optimality is the makespanCmax = max{Cij : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
whereCij is the completion time of operationOij . Applying the three-�eld notation,
we will denote the problems asO2|pij = bijt|Cmax andO3|pij = bijt|Cmax.

2 Related research
Open shop scheduling problems were de�ned by Gonzales and Sahni [6], who assumed
that operation processing times are �xed and proved that the two-machine problem
with the makespan objective,O2||Cmax, is solvable inO(n) time. They also proved
thatm-machine generalization of the two-machine open shop problem,Om||Cmax, is
NP -hard for every �xedm ≥ 3. The question whether this problem is stronglyNP -
hard remains unanswered as noted by Woeginger [15]. A similar question in case when
operation processing times satisfy the equality pij = pj was answered in the negative
by Sevastyanov [13]. We refer the reader to paper by Gawiejnowicz and Kolińska [5],

∗Speaker, e-mail: stgawiej@amu.edu.pl

DOI: 10.14708/isbn.978-83-951298-6-5p33-37

33

chapter by Gonzales [7], review by Woeginger [15], and to monographs by Pinedo [12]
and Tanaev et al. [14] for more details.

The research on open shop scheduling with proportionally deteriorating opera-
tion processing times, introduced by Mosheiov [11], is very limited. Kononov [8] and
Mosheiov [10] independently proved that problem O2|pij = bijt|Cmax is solvable
inO(n) time by a modi�cation of the Gonzalez-Sahni algorithm. Kononov [8] also
proved thatm-machine time-dependent open shop problems are intractable form ≥ 3,
even if job deterioration rates are restricted, since problem O3|pij = bijt|Cmax

and problem O3|pij = bijt, b3j = b|Cmax both are NP-hard. Gawiejnowicz
and Kononov [9] proved that if we change proportional processing times into lin-
ear ones, then already two-machine open shop problem with the makespan objective,
O2|pij = aij+bijt|Cmax, isNP -hard. We refer the reader to review by Gawiejnowicz
[2], and to monographs by Agnetis et al. [1] and Gawiejnowicz [3] for more details.

3 Our results
Our �rst result is the following new lower bound on the value of Cmax for multi-
machine time-dependent open shop problem.

Theorem 1. (Gawiejnowicz and Kolińska [5]) The minimum makespan of any feasible
schedule σ for problemOm|pij = bijt|Cmax satisfies the inequality

C?max(σ) ≥ max

 max

1≤i≤m

n∏

j=1

(1 + bij)

 , max

1≤j≤n

{
m∏

i=1

(1 + bij)

}

 . (1)

Lower bound (1) is a generalization of the following lower bound for two-machine
time-dependent open shop problem,

C?max(σ) ≥ max

n∏

j=1

(1 + b1j),

n∏

j=1

(1 + b2j), max
1≤j≤n

{(1 + b1j)(1 + b2j)}

 ,

(2)
proved by Mosheiov [10].

Our next result concerns problem O2|pij = bijt|Cmax. We propose to solve
this problem using the following new scheduling rule, which is a time-dependent
counterpart of the LAPT rule by Pinedo [12]:

whenever a machine becomes free, assign to the machine this job was not yet
processed on either machine and which has the largest deterioration rate on
the other machine.

34 The Third International Workshop on Dynamic Scheduling Problems

The new rule, the Largest Alternate Deterioration Rate first (LADR), assigns a job to
the freed machine taking into account the deterioration rate of the job on the other
machine. If both machines are idle and deterioration rates of the same job on both
machines are equal, this job may be assigned to any of both machines. Jobs that already
have been completed on the other machine, will be assign to the machine just freed
with the lowest priority.

Theorem 2. (Gawiejnowicz and Kolińska [5]) ProblemO2|pij = bijt|Cmax is solv-
able by the LADR rule and the makespan of schedule constructed by the rule satisfies
formula (2).

This result may be proved either by adopting the original proof by Pinedo [12] or
by applying the notion of isomorphic scheduling problems introduced by Kononov and
Gawiejnowicz [4].

Example 3. (Gawiejnowicz and Kolińska [5]) Let us consider an instance of problem
O2|pij = bijt|Cmax with t0 = 1 and n = 3 jobs with deterioration rates as in
Table 1.

Table 1. Example instance of problemO2|pij = bijt|Cmax

j b1j b2j
1 3 7
2 7 1
3 15 15

The LADR rule generates for this instance the schedule presented in Fig. 1. Since
the lower bound (2) for the instance equals 512 time units and since the makespan for
this schedule equals 512 time units as well, the schedule is optimal.

M1

M2

0 1 4 8 16 32 64 128 256 512

O13 O11 O12

O22 O21 O23

Figure 1. Schedule generated by the LADR rule for instance in Table 1

July 5th – 6th, 2021, Poznań, Poland 35

Our last result concerns problemO3|pij = bijt|Cmax. We propose to solve this
problem using a new scheduling rule, the Largest Total Remaining Deterioration Rate
on Other Machines first (LTRDROM). This rule can be formulated as follows:

every time a machine is freed, the job with the largest total remaining
deterioration rate on all other machines, among available jobs, is selected
for processing.

The quality of schedules generated by the LTRDROM rule was tested in a few
numerical experiments. In total, we tested 240 instances. From 120 tested small-size
instances with 5, 10 or 15 jobs, optimal schedules were generated for about 55% instances.
A better percentage was observed for 120 medium-size instances with 20, 25 or 30 jobs,
where more than 60% of instances were solved to optimality. The average computation
time varied between 1.1191 ms for instances with n = 5 jobs and 7.4223 ms for instances
with n = 30 jobs. The results (see Gawiejnowicz and Kolińska [5] for details) suggest
that the LTRDROM rule generates near-optimal schedules for small- and medium-size
instances of problemO3|pij = bijt|Cmax.

4 Future research
One of possible topics for future research is the construction of branch-and-bound
algorithms for problem O3|pij = bijt|Cmax. This is a challenge in view of known
problems with numerical over�ow errors which may appear as a result of multiplicativity
of the problem. Another interesting future research topic may be a new scheduling
algorithm, combining a good initial solution, e.g. the one generated by the LTRPOM
rule, and the lower bound (1).

References
[1] A. Agnetis, J-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multi-

agent Scheduling: Models and Algorithms, Springer, Berlin-Heidelberg, 2014,
doi: 10.1007/978-3-642-41880-8.

[2] S. Gawiejnowicz, A review of four decades of time-dependent scheduling: main
results, new topics, and open problems, Journal of Scheduling, 23 (2020), 3–47,
doi: 10.1007/s10951-019-00630-w.

[3] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling,
Springer, Berlin-Heidelberg, 2020, doi: 10.1007/978-3-662-59362-2.

[4] S. Gawiejnowicz, A. Kononov, Isomorphic scheduling problems, Annals of Oper-
ations Research, 213 (2014), 131–145, doi: 10.1007/s10479-012-1222-2.

36 The Third International Workshop on Dynamic Scheduling Problems

[5] S. Gawiejnowicz, M. Kolińska, Two- and three-machine open shop scheduling
using LAPT-like rules, Computers & Industrial Engineering, 157 (2021), 107261,
doi: 10.1016/j.cie.2021.107261.

[6] T. Gonzalez, S. Sahni, Open shop scheduling to minimize �nish time, Journal of
the Association for Computing Machinery, 23 (1976), 665–679, doi: 10.1145/

321978.321985.

[7] T. F. Gonzalez, Open shop scheduling, in: J. Y-T. Leung, Handbook of Scheduling:
Algorithms, Models and Performance, Chapman & Hall/CRC Press, Boca Raton,
2004, doi: 10.1201/9780203489802.

[8] A. Kononov, Combinatorial complexity of scheduling jobs with simple linear
deterioration, Discrete Analysis and Operations Research, 3 (1996), 15–32 (in Rus-
sian).

[9] A. Kononov, S. Gawiejnowicz, NP-hard cases in scheduling deteriorating jobs
on dedicated machines, Journal of the Operational Research Society, 52 (2001),
708–718, doi: 10.1057/palgrave.jors.2601117.

[10] G. Mosheiov, Complexity analysis of job-shop scheduling with deteriorating
jobs, Discrete Applied Mathematics, 117 (2002), 195–209, doi: 10.1016/

S0166-218X(00)00385-1.

[11] G. Mosheiov, Scheduling jobs under simple linear deterioration, Computers
and Operations Research, 21 (1994), 653–659, doi: 10.1016/0305-0548(94)

90080-9.

[12] M. L. Pinedo, Scheduling: Theory, Algorithms and Systems, 5rd ed., Springer,
Berlin-Heidelberg, 2016, doi: 10.1007/978-3-319-26580-3.

[13] S. Sevastyanov, Some positive news on the proportionate open shop prob-
lem, Siberian Electronic Mathematical Reports, 16 (2019), 406–426, doi: 10.

33048/semi.2019.16.023.

[14] V. S. Tanaev, Y. N. Sotskov, V. A. Strusevich, Scheduling Theory: Multi-Stage
Systems, Kluwer, Dordrecht, 1994, doi: 10.1007/978-94-011-1192-8.

[15] G. Woeginger, The open shop scheduling problem, The 35th Symposium of
Theoretical Aspects of Computer Science, 2018, 4:1-12, doi: 10.4230/LIPIcs.

STACS.2018.4.

July 5th – 6th, 2021, Poznań, Poland 37

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

On the complexity of conditional DAG scheduling

Alberto Marchetti-Spaccamela
Sapienza University of Rome, Italy

Nicole Megow
University of Bremen, Germany

Jens Schlöter∗
University of Bremen, Germany

Martin Skutella
Technical University of Berlin, Germany

Leen Stougie
CWI Amsterdam and Vrije Universiteit Amsterdam, Netherlands

Keywords: parallel processing, makespan, conditional DAG, complexity

1 Introduction
As parallel processing became ubiquitous in modern computing systems, parallel task
models have been proposed to describe the structure of parallel applications. A popular
model is to represent a task by a DAG (directed acyclic graph). Each node represents
the execution of a sub-task and each edge formulates precedence constraints between
sub-tasks. The DAG model assumes a �xed structure capturing only straight-line code.
While this captures the intra-parallelism of tasks, it does not capture the typical condi-
tional nature of control �ow instructions, such as if-then-else statements. The
presence of conditional constructs within the modeled code may mean that di�erent
activations of the task cause di�erent parts of the code to be executed. The condi-
tional DAG model generalizes the DAG model by allowing conditional nodes (Baruah
et al. [3], Melani et al. [9]).

While �rst algorithmic results have been presented for the conditional DAG model,
the complexity of schedulability analysis remains wide open. We perform a thorough
analysis on the worst-case makespan of a conditional DAG task under list scheduling.
We show several hardness results for the optimization problem on multiple processors,
even if the conditional DAG has a well-nested structure. For general conditional DAG
tasks, the problem is intractable even on a single processor. Complementing these

∗Speaker, email: jschloet@uni-bremen.de

DOI: 10.14708/isbn.978-83-951298-6-5p39-45

39

negative results, we show that certain practice-relevant DAG structures are very well
tractable. The full version of this abstract is a part of the proceedings of IPDPS 2020
(Marchetti-Spaccamela et al. [10]).

2 Related work

Earlier proposed parallel task models (fork/join, synchronous parallel, DAG) do not
capture control �ow information and conditional executions. Fonseca et al. [5] propose
the multi-DAG that represents a task as a collection of DAGs, each representing a
control �ow. When a task is executed, exactly one of the DAGs is executed. The main
issue with this model is the possibly exponential number of control �ows.

Chakraborty et al. [4] consider a more restricted variant of the conditional DAG
model, which models tasks as a two-terminals DAG and for each node exactly one
successor needs to be executed. Additionally, each edge characterizes a delay for the
start time of the successor. The authors provide complexity results and exact and
approximate schedulability analysis for preemptive and non-preemptive scheduling.

Federated scheduling is a scheduling policy for scheduling a set of recurrent tasks
modeled by DAGs; each task has a release time and deadline. In the model, we assign
high-demand conditional DAGs to a number of completely dedicated processors. All
remaining tasks are assigned to a pool of shared processors. Baruah [2] considered fed-
erated scheduling for conditional recurring DAG tasks assuming constrained deadlines.
In this case, our results imply complexity bounds on the sub-problem of minimizing
the number of processors necessary to schedule a high-demand task.

3 System model and de�nitions

if c1 then
if c2 then

basic block b1;
else

basic block b2;
end if

else
basic block b3;

end if

c11
c21

b1 b2

c22
c12

b3

Figure 1. Example of a conditional DAG

Let τ be a conditional parallel task
(cp-task) processed onm identical pro-
cessors. The task τ is characterized by
a conditional DAG G = (V,E,C)
where V is a set of nodes,E ⊆ V ×V
is a set of directed edges (arcs) and
C ⊆ V × V is a set of distinguished
node pairs, the conditional pairs. Each
j ∈ V represents a sequential compu-
tation unit (sub-task, job) with processing time pj . Slightly abusing notation, we refer
to jobs and nodes equivalently. The arcs describe dependencies between sub-tasks:
if (v1, v2) ∈ E, then v2 can only start processing if v1 has completed, except for
endpoints of conditional pairs as explained below. We call v1 a predecessor of v2.

40 The Third International Workshop on Dynamic Scheduling Problems

A distinguished pair (c1, c2) ∈ C of nodes is a conditional pair which denotes the
beginning and ending of a conditional construct such as an if-then-else statement.
In sub-task c1, a conditional expression is being evaluated and, depending on the
outcome, exactly one out of many possible subsequent successors must be chosen. In
our �gures, the conditional nodes are depicted by a square and all other nodes are
circles; see Figure 1. Following the de�nitions given in Baruah et al. [3], Melani et al. [9],
we formally de�ne a conditional DAG.

De�nition 1. A conditional DAG G = (V,E,C) is a DAG (V,E) and a set of
conditional pairsC ⊆ V × V such that the following holds for each (c1, c2) ∈ C:

1. There are multiple outgoing edges from c1 inE. Suppose that there are exactly
k outgoing edges from c1 to vertices s1, s2, . . . , sk for some k > 1. Then there
are exactly k incoming edges into c2 inE, from the vertices t1, t2, . . . , tk.

2. For each l ∈ {1, . . . , k} letPl be the set of all paths from sl to tl inG. We de�ne
Gl = (Vl, El) as the union of all paths from sl to tl, i.e., Vl =

⋃
p∈Pl

V (p) and
El =

⋃
p∈Pl

E(p), where V (p) andE(p) denote the sets of vertices and edges
on path p. We refer to eachGl with l ∈ {1, . . . , k} as a conditional branch.

3. It must hold that Vl ∩ Vl′ = ∅ for all l, l′ with l 6= l′. Additionally, with the
exception of (c1, sl) and (tl, c2) there should be no edges inE into vertices in
Vl from nodes not in Vl or vice versa for each l ∈ {1, . . . , k}. That is, for all l,
E ∩ ((V \ Vl)× Vl) = {(c1, sl)} andE ∩ (Vl × (V \ Vl)) = {(tl, c2)}.

For each pair (c1, c2) ∈ C we call c1 and c2 conditional nodes and refer to the sub-
graph of G beginning at c1 and ending at c2 as conditional construct in G.
Notice that in the above de�nition, 3. explicitly rules out any interaction between
a node within a conditional branch and any other node outside this branch. The re-
striction to well-nested structures is very natural when modeling the execution �ow
of a structured programming language (Melani et al. [9]). We refer to a conditional
DAG with shared nodes when relaxing restriction 3. and allowing interaction between
di�erent conditional branches.

When executing a conditional DAGG, at most one conditional branch per condi-
tional pair is executed. For a c ∈ C no branch is executed i� the construct of c is nested
into a branch that is not executed. Thus, a job j is executed if either (i) node j is not
part of any conditional branch, i.e, j 6∈ Vl for each branchGl of any conditional pair c,
or (ii) the innermost branchGl with j ∈ Vl is executed. Let J ⊆ V be a set of jobs
obtained by fully executing the jobs of the conditional DAG G = (V,E,C) taking
into account the outcome of conditional pairs. Let GJ = (VJ , EJ) with VJ = J
denote the subgraph ofG induced by J , thenGJ is a realization ofG. LetJ be the
collection of all sets J for which a realization with VJ = J exists.

We consider the list scheduling of conditional DAGs. Let τ be a cp-task with
G = (V,E,C) and with processing times pj , for each j ∈ V , to be executed onm

July 5th – 6th, 2021, Poznań, Poland 41

parallel identical processors. Let≺ be a given fixed-priority order (FP-order) over V . A
(non-preemptive) �xed-priority schedule (FP-schedule) starts executing the job with
the highest priority according to≺ among the available jobs whenever a processor is
idle and processes it until completion. A job is available if all predecessors have been
completed. For each J ∈ J let SJ denote the FP-schedule induced by ≺ for the
realizationGJ . LetCJ denote the latest completion time of any job inGJ in SJ . This
is the makespan for realizationGJ of the cp-task τ . Then,M(G,≺) = maxJ∈J CJ
is the worst-case makespan of τ for list scheduling according to the FP-order≺.

De�nition 2 (CDAG-MAX). Given a cp-task with a conditional DAGG, processing
times pj , a numberm of parallel identical processors and an FP-order≺, the worst-case
makespan problem (CDAG-MAX) is to computeM(G,≺). Slightly abusing notation,
we use CDAG-MAX also to refer to the following decision variant of this problem: for
a given CDAG-MAX instance and a parameterD decide whetherM(G,≺) ≤ D.

4 Our results
We give several hardness results for di�erent CDAG-MAX variants using a general
reduction framework that exploits a non-obvious relation between the problem of com-
puting themaximummakespan for a conditional DAG andminimizing the maximum
makespan for a DAG. This framework uses an intermediate problem and we show
that there is an approximation preserving reduction from the intermediate problem
to CDAG-MAX that also preserves some structural properties of input instances. The
reduction framework allows us to show hardness and inapproximability results for
CDAG-MAX by proving corresponding results for the intermediate problem.

The used intermediate problem is LS-MAX, where we are given a precedence
constraint DAG G = (V,E), processing times pj for each job j ∈ V , m identical
parallel processors and a deadlineD. The goal is to decide whetherCmax > D, where
Cmax is the maximum makespan that can be achieved by any list scheduling (FP) order.
The main part of our reduction framework is to give a reduction ful�lling Theorem 1.

Theorem 1. There is an approximation preserving polynomial time reduction from
LS-MAX to CDAG-MAX.

cj1

• • •v2jv1j vn−1j
vnj

cj2

Figure 2. Conditional construct as
used in the reduction of Theorem 1

The main idea of the reduction that proves
Theorem 1 is to use the same graph for the con-
structed CDAG-MAX instance as in the input
LS-MAX instance but replace each original job
j with a conditional construct de�ned by a con-
ditional pair cj = (cj1, c

j
2). Each branch of the

conditional construct consists of a single copy

42 The Third International Workshop on Dynamic Scheduling Problems

a)
32

1 4

c11 G1 c12

c21 G2 c22

c31
G3 c32

c41 G4 c42

b) c)

c11 vl11 c12

c21 vl22 c22 c31 vl33 c32

c41 vl44 c42

Figure 3. a) Input LS-MAX instance. b) Conditional DAG as constructed by the
reduction of Theorem 1. EachGi represents a conditional construct as illustrated in

Figure 2. c) Realization of the constructed conditional DAG.

of job j (see Figure 2) such that each realization of the constructed conditional DAG
will execute exactly one copy of each original job using precedence constraints analo-
gous to the original instance. Essentially, each realization of the constructed conditional
DAG then is a copy of the input LS-MAX graph (with conditional dummy nodes) as
illustrated in Figure 3. The key aspect of the reduction is to de�ne the �xed priority
order of the constructed conditional DAG task such that each possible list scheduling
order of the LS-MAX instance is used by at least one realization of the constructed
conditional DAG. This implies that the makespan of each list scheduling schedule of
theLS-MAX instance corresponds to the makespan of a realization of theCDAG-MAX
instance and vice versa. A full version of this proof sketch implies Theorem 1. Using
Theorem 1 and additional properties of the reduction, we show hardness and inapprox-
imability results for CDAG-MAX by proving the corresponding results for LS-MAX.
Table 1 summarizes these results.

Table 1. Complexity results for CDAG-MAX variants without shared nodes
CDAG-MAX Variant Complexity Reduction via
General (preemptive and non-preemptive) coNP -complete P ||Cmax, [6]
m = 2 coNP -complete (Weakly) P2||Cmax, [8]
Tree-Realizations coNP -complete P ||Cmax

4-Chain-Realizations,m = 2 coNP -complete (Weakly) P2|3chains|Cmax, [1]
Approx. within factor 7/5 and 6/5 (preemptive) NP -hard Clique, [8]

On the positive side, it is known that the worst-case makespan of a conditional
DAG task can be approximated within a factor of 2 (Melani et al. [9]). We show that
if the conditional DAG has in each realization bounded width, then the worst-case
makespan for non-preemptive FP-scheduling can be computed in pseudo-polynomial
time via a dynamic program. A realization has a bounded width, if the size of the
longest antichain of the realization is bounded by a constant. We also show that this
algorithm can be turned into an FPTAS if a certain monotonicity property holds for
the job completion times under FP-scheduling. We prove that the property holds, e.g.,
for a bounded number of chains. In general, the monotonicity property does not hold
as a classical example known as Graham anomaly [7] shows.

July 5th – 6th, 2021, Poznań, Poland 43

ci1

ti2

si1

v

ti1
ci2

sj1

tj1

cj1

cj2

sj2

tj2

Figure 4. Conditional DAG with shared nodes

Finally, it is known that the
worst-case makespan for list schedul-
ing a conditional DAG task with in-
dependent conditional constructs
on a single processor can be com-
puted in polynomial time (Melani
et al. [9]). We show that it is crucial
for this result that di�erent conditional constructs are independent of each other.

Conditional DAGs with shared nodes allow dependencies between di�erent con-
ditional branches in form of shared nodes (see Figure 4). In this relaxed model, a node
j is executed if at least one of the innermost conditional branches Gl with j ∈ Vl
is executed. We show that in this model computing the worst-case makespan under
FP-scheduling is already coNP -hard on a single machine.

References
[1] A. Agnetis, M. Flamini, G. Nicosia, A. Paci�ci, Scheduling three chains on

two parallel machines, European Journal of Operational Research, 202 (2010),
669-674, doi: 10.1016/j.ejor.2009.07.001.

[2] S. Baruah, The federated scheduling of systems of conditional sporadic DAG
tasks, 2015 International Conference on Embedded Software, 2015, 1–10, doi: 10.

1109/EMSOFT.2015.7318254.

[3] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, The global EDF scheduling
of systems of conditional sporadic DAG tasks, 27th Euromicro Conference on
Real-Time Systems, 2015, 222–231, doi: 10.1109/ECRTS.2015.27.

[4] S. Chakraborty, T. Erlebach, S. Kunzli, L. Thiele, Schedulability of event-driven
code blocks in real-time embedded systems,Proceedings of the 39thAnnualDesign
Automation Conference, 2002, 616–621, doi: 10.1145/513918.514075.

[5] J. C. Fonseca, V. Nélis, G. Raravi, L. M. Pinho, A multi-dag model for real-
time parallel applications with conditional execution, Proceedings of the 30th
Annual ACM Symposium on Applied Computing, 2015, 1925–1932, doi: 10.

1145/2695664.2695808.

[6] M. R. Garey, D. S. Johnson, Strong NP-completeness results: motivation, ex-
amples, and implications, Journal of the Association for Computing Machinery,
25 (1978), 499–508, doi: 10.1145/322077.322090.

[7] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on
AppliedMathematics, 17 (1969), 416–429, doi: 10.1137/0117039.

44 The Third International Workshop on Dynamic Scheduling Problems

[8] J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under precedence
constraints, Operations Research, 26 (1978), 22–35, doi: 10.1287/opre.26.

1.22.

[9] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, G. C. Buttazzo,
Response-time analysis of conditional DAG tasks in multiprocessor systems, 27th
Euromicro Conference on Real-Time Systems, 2015, 211–221, doi: 10.1109/

ECRTS.2015.26.

[10] A. Marchetti-Spaccamela, N. Megow, J. Schlöter, M. Skutella, L. Stougie, On the
complexity of conditional DAG scheduling in multiprocessor systems, 2020 IEEE
International Parallel and Distributed Processing Symposium, 2020, 1061–1070,
doi: 10.1109/IPDPS47924.2020.00112.

July 5th – 6th, 2021, Poznań, Poland 45

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Single machine scheduling with step-learning

Baruch Mor
Ariel University, Ariel, Israel

Gur Mosheiov∗
School of Business Administration, The Hebrew University, Jerusalem, Israel

Keywords: scheduling, single machine, step-learning, makespan

1 Introduction
In traditional scheduling theory, the processing times of the jobs were assumed to
be constants dictated in advance. But as scheduling theory evolved, this concept was
revised and many studies have proposed variable job processing times to re�ect real-
life circumstances. As claimed by Gawiejnowicz [2]: “Scheduling with variable job
processing times has numerous applications, e.g., in the modelling of the forging process
in steel plants, manufacturing of preheated parts in plastic molding or in silverware
production, finance management and scheduling maintenance or learning activities”.

The most prevalent aspects of variable job processing times are deterioration and/or
learning e�ects. In this study, we concentrate on learning e�ects. The importance of the
learning process is its implications on manufacturing routines. Empirical research has
con�rmed that learning-by-doing increases the productivity on the single worker level
and on the team level. The learning e�ects are manifested by enhanced productivity of
the production system, decreased operational expense, and faster time-to-market, thus
improving the sustainability of the business. A very recent paper by Azzouz et al. [1]
summarizes developments in the concept of learning e�ects and presents an overview
of the signi�cant learning models, a classi�cation scheme for scheduling under learning
e�ects and a mapping of the relations between major models.

An important model for time-dependent job processing times is that of step-deteri-
oration, which was �rst proposed by Mosheiov [4], and suggested that the processing
time of a job follows a step function of its starting time. More speci�cally, the actual
processing times of the jobs that start after their deterioration-dates experience a step in-
crease. The author focused on minimizing makespan with a single step-deterioration on
a single- and multi-machine settings, presentedNP -completeness justi�cation, integer
programming formulation and provided a heuristic procedure. An abundance of stud-
ies was published subsequently, assuming common deterioration-date or job-speci�c

∗Speaker, e-mail: msomer@huji.ac.il

DOI: 10.14708/isbn.978-83-951298-6-5p47-50

47

deterioration-dates, various step-functions and machine settings; see Gawiejnowicz [2]
and Strusevich and Rustogi [5].

Considering this wide research on step-deterioration, it is surprising that the com-
plementary phenomenon, i.e. that of step-learning has yet to be discussed, let alone
studied. Step-learning can be encountered in many real-life situations, e.g. when im-
proved routines are assimilated in the production process, enhanced raw materials are
utilized, faster equipment replaces outdated models, and, ultimately, when disruptive
technology emerges and revolutionizes industry. Thus, the signi�cance of incorporating
step-learning into scheduling theory is two-fold, both theoretical and practical.

In the context of scheduling theory, there are two main approaches to formulate
learning-e�ects, i.e., by time-dependent or by position-dependent job processing times.
We focus on a single-machine scheduling setting with both time-dependent and job-
dependent step-learning e�ect. Each job has its own Learning-Date (LD), such that
if the starting time of a job is not smaller than this value, its actual processing time is
reduced by a job-dependent factor. No idle time between consecutive jobs is permitted,
an assumption which is justi�ed in numerous manufacturing systems, due to the cost
of stopping and renewing the production process. The objective function is mini-
mum makespan. The problem is proved to beNP-hard, and a pseudo-polynomial
dynamic programming (DP) algorithm is introduced and tested. Our numerical tests
indicate that medium size problems can be solved in a very reasonable running time.
We also study the special case in which all jobs share a Common Learning-Date, de-
noted CONLD. This problem is NP-hard as well, but a more e�cient dynamic
programming is proposed, and larger instances are solved to optimality.

2 Problem formulation
Formally, a set J containing n jobs is to be processed on a single machine, with the
jobs ready for processing at time zero and no idle times and no preemption allowed.
The basic (maximal) processing time of job j ∈ J , is denoted by uj and the reduced
(minimal) processing time is denoted by vj , such that uj , vj ∈ Z+. We also denote by
umax = maxj∈J {uj}, the maximal basic processing time among all jobs.

For a given schedule, the starting time of job j ∈ J , is denoted by Sj and the
completion time of job j ∈ J , is denoted by Cj . In this study, we focus on the
makespan, i.e., the completion time of the last job to leave the production line, de�ned
asCmax = maxj∈J {Cj}.

We denote by LDj ∈ Z the learning-date of job j ∈ J and by LDmax =
maxj∈J {LDj} , the maximal learning-date in setJ . If the starting time of job j is
strictly less than LDj , then its processing time is uj , whereas if the starting time is
equal to or greater thanLDj , its processing time is vj . Eventually, the actual processing
time of job j ∈ J is de�ned as

48 The Third International Workshop on Dynamic Scheduling Problems

pj =

{
uj , if Sj < LDj

vj , if Sj < LDj .

If the processing of job j starts before its job-dependent learning-date,LDj , it is
regarded as an early job, and otherwise if the processing starts at or after theLDj , it is
considered as late job. Consequently, we denote byJ E andJ L, the subsets of early
and late jobs, respectively, such thatJ = J E ∪ J L andJ E ∩ J L = ∅.

Utilizing the standard 3-�eld notation of scheduling problems (Graham et al. [3]),
the problem studied here, in short denoted by Q1, is

1
∣∣∣LDj , pj ∈ {uj , vj : uj ≤ vj}

∣∣∣Cmax.

We then focus on the special case of a common learning-date (CONLD), i.e.,
LDj = LD, j ∈ J . For this setting, the subset of jobs that start their production
before LD are regarded as early jobs, whereas the subset of jobs that start their pro-
duction exactly at or afterLD are considered as late jobs. TheCONLD problem, in
short denoted Q2, is the following

1
∣∣∣LDj = LD, pj ∈ {uj , vj : uj ≤ vj}

∣∣∣Cmax.

3 Our results
We �rst prove that problem Q1 isNP-hard. In fact, we prove that even the special
case of a common learning-date (i.e., problem Q2) isNP -hard.

Theorem 1. ProblemQ1 isNP -hard even for a common learning-date.

Next, we introduce a pseudo-polynomial DP algorithm, thus establishing that
problem Q1 isNP -hard in the ordinary sense. In order to do this, we prove a number
of properties of an optimal schedule for the problem.

Property 1. An optimal schedule exists such that all the early jobs are scheduled prior to
the late jobs.

Property 2. An optimal schedule exists such that all the early jobs are scheduled according
to Earliest Learning-Date first (ELD) rule.

Property 3. An optimal schedule exists such that all the late jobs are scheduled according
to Earliest Learning-Date first (ELD) rule.

The running time of the DP, denoted DP1, is provided in the following result.

July 5th – 6th, 2021, Poznań, Poland 49

Theorem 2. The computational complexity of algorithm DP1 is O
(
n
(
TEmax

)2),
where TEmax denotes the maximal completion time of any subset of early jobs.

A DP for problem Q2, denoted DP2, is introduced as well. Its running time is
given in the following result.

Theorem 3. The computational complexity ofDP2 isO
(
numaxT

E
max

)
.

An extensive numerical study was performed in order to evaluate the actual running
times of each of algorithms DP1 and DP2 as a function of the input parameters.
Instances of up to 175 jobs and 500 jobs were solved by DP1 and DP2, respectively.
The worst-case running time of DP1withn = 175 did not exceed 46.1 seconds, while
the worst-case running time of DP2 with n = 500 did not exceed 12.9 seconds.

4 Future research
Future interesting and challenging topics might be dedicated to the extensions, either
to multi-step learning, and to multi-machine settings.

References
[1] A. Azzouz, M. Ennigrou, L. Ben Said, Scheduling problems under learning ef-

fects: classi�cation and cartography, International Journal of Production Research,
56 (2018), 1642–1661, doi: 10.1080/00207543.2017.1355576.

[2] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling, Springer,
Berlin-Heidelberg, 2020, doi: 10.1007/978-3-662-59362-2.

[3] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling: a survey, Annals
of Discrete Mathematics, 5 (1979), 287–326, doi: 10.1016/S0167-5060(08)

70356-X.

[4] G. Mosheiov, Scheduling jobs with step-deterioration: minimizing makespan
on a single-and multi-machine, Computers & Industrial Engineering, 28 (1995),
869–879, doi: 10.1016/0360-8352(95)00006-M.

[5] V. A. Strusevich, K. Rustogi, Scheduling with Time-Changing E�ects
and Rate-Modifying Activities, Springer, Cham, 2017, doi: 10.1007/

978-3-319-39574-6.

50 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Consideration of routine losses due to intermittent
production in �ow shop scheduling

Frederik Ostermeier∗
BMWGroup inMunich, Germany
Institute for Production Systems, Technical University in Dortmund, Germany

Keywords: learning e�ects, forgetting e�ects, scheduling, �ow shop

1 Introduction
In manual �ow shops workers learn and aquire routine by repetitively processing units
of the same product leading to a decrease of processing times with increasing number
of units processed. However, routine follows an ongoing learn-forget-relearn cycle
as it can be lost whenever the production of a product is interrupted (Givi et al. [3]).
Forgetting during the interruption leaves the worker at an earlier point of the learning
curve from which he/she begins relearning after the interruption (Bailey [1]). Scheduled
rest breaks, times for maintenance activities, but also times at which a worker performs
tasks at di�erent stations or on di�erent products are relevant interruptions within a
shift (Globerson and Levin [4]).

Forgetting models used in short-term scheduling primarily focused on modeling
the impact of rest breaks scheduled within a shift (Nembhard and Uzumeri [7], Givi et
al. [3]). In the context of dual-resource-constrained production environments some
authors considered worker transfers between di�erent stations as causes for forgetting
(Jaber at al. [5]). Less research dealt with forgetting due to the production of various
products in an intermixed sequence on a line. However, observations in industrial
practice clearly indicate that product-dependent routine is at least partially lost if work-
ers process di�erent products alternately. Such intermittent production of products
is quite typical in manual mixed-model assembly lines where di�erent products can
be launched in any sequence. Consequently there exists a need to model the losses in
routine due to intermittent production.

This work aims at providing a modeling formulation for routine losses in intermit-
tent �ow shop production that can be used in existing short-term learn-forget-relearn
models such as those by McCreery and Krajewski [6], Yue at al. [9] and Ostermeier [8].
Not modeled are transfer e�ects between shifts or between products from prior pro-
duction periods as the focus are the e�ects present within one single shift.

∗Speaker, e-mail: frederik.ostermeier@bmw.de

DOI: 10.14708/isbn.978-83-951298-6-5p51-56

51

2 Modeling routine losses
To model routine losses we build on the processing time formula derived by Ostermeier
[8]. As in (1) the processing time is the sum of a learning term flearning,p(np) depend-
ing on the current volume np processed of product p and a fatigue term ffatigue(t)
that depends on the time t already passed within a shift, i.e.

pij(np, t) = flearning,p(np) + ffatigue(t). (1)

This work’s fatigue term denoted in (2) is identical to the one presented in [8]. Fatigue
can lead to processing time increases from the normal processing time pij up to δ
percent if the degree of fatigue F (t) reaches its maximum of 100%. The degree of
fatigue increases with time in dependence of a fatigue rateFR as depicted in (3). During
rest breaks, recovery with a recovery rateRR takes place, leading to a remaining degree
of fatigue ofR(t1, lb) after the break as denoted in (4). With the recovery function we
model the impact of rest breaks b of duration lb starting at time t1 and ending at time
t2. To ensure that after a break fatigue increases again with the right slope of the fatigue
curve, the e�ective time has to be adjusted by t − t2 + t0 with t0 as in (5) being the
time at which the original fatigue curve has the exact slope that re�ects the degree of
fatigue remaining after the rest break at t2. Thus, the fatigue term is de�ned stepwise
for intervals before a rest break (t ≤ t1), during a rest break (t1 < t ≤ t2) and after a
rest break (t ≥ t2), i.e.

ffatigue(t) =

pij · δ · F (t), t ≤ t1
pij · δ ·R(t1, lb), t1 < t ≤ t2
pij · δ · F (t− t2 + t0), t ≥ t2

(2)

F (t) = 1− e−FR·t (3)

R(t1, lb) = F (t1) · e−RR·t (4)

t0 = d(ln(1− (1− e−FR·t1) · e−RR·lb))/− FRe (5)

The learning term presented in (6) is altered in contrast to [8] to account for routine
losses due to intermittent production of di�erent products. np,2 captures the volume
of product p at the last position that a product of this product has been produced and
no longer the volume at the beginning of a rest break. Consequently, this work treats
rest breaks as the only interruptions relevant for recovery, while interruptions relevant
for forgetting can be both rest breaks and the times during which di�erent products
are processed. As in (6), the learning term consists of a learning function before an
interruption (np < np,2) and a relearning term that considers forgetting after the
interruption has occurred (np ≥ np,2). The learning curve with product-dependent
learning rateLRp uses a minimum notation as done by Cheng and Wang [2] in order
to guarantee that learning reaches a plateau after a volume np,0. After the interruption

52 The Third International Workshop on Dynamic Scheduling Problems

the e�ective volume relevant for learning has to be adjusted bynp−np,2 +np,1 in order
to take the routine losses due to forgetting into account. np,1 constitutes the e�ective
volume with the right slope on the original learning curve after the last interruption of
production of product p. Following (7),np,1 is a function ofnp,2, the volume x∆t that
could have been produced during the interruption of e�ective duration ∆t computed
as in (8), the learning rateLRp and the forgetting rate V R.

flearning,p(np) =

{
(min{np, np,0})LRp · pij , np < np,2

(min{np − np,2 + np,1, np,0})LRp · pij , np ≥ np,2
(6)

np,1 = np,2 · x∆t
V R/LRp (7)

x∆t = b∆t/pijc (8)

The main di�erence to [8] is that the e�ective duration of the interruption ∆t is
no longer merely the length of the break lb but partially considers times during which
di�erent products are processed, as denoted by (9). Therefore, for all jobs positioned
between the position rnp,2 , being the last position at which a job of product p has
been processed, and the sequence position before the current sequence position r we
consider times sk − sk−1. For a job at position k, sk − sk−1 is the time span between
the starting times of succeeding jobs and contains both processing times and potential
blocking and starving times of the station, i.e. the elapsed time per job at which the
product p of interest is not processed. This time is weighted with a product-dependent
routine loss factor θp. If no routine is lost whenever a di�erent product is produced,
θp = 0. If routine is lost, θp takes a value between 0 and 1. Thus, θp constitutes a lever
that allows to count the elapsed time partially. It is product-dependent as the amount
of forgetting may increase if products with dissimilar tasks are produced. To ensure that
the desired θp is used for the job at sequence position k, ϑkp is introduced. ϑkp = 1 if
a unit of product p is processed at position k, 0 otherwise. In order to consider also
times of rest breaks

∑B
b=1 ωkb · lb · (1 −

∑P
p=1 θp · ϑkp) adds the times associated

with rest breaks that occur directly after processing of jobs at position k. ωkb is 1, if
break b takes place after the production of the job at sequence position k has started
and before start of the job at position k + 1. Note that the term (1−∑P

p=1 θp · ϑkp)
is used to ensure that the break times are not partially double-counted. As a break time
in the interval is included in the starting time di�erence and weighted with θp, this
fraction has to be subtracted:

∆t =
r∑

k=rnp,2+1

(
P∑

p=1

θp ·ϑkp · (sk− sk−1) +
B∑

b=1

ωkb · lb · (1−
P∑

p=1

θp ·ϑkp)). (9)

With the proposed formulation the interruption duration relevant for forgetting is
extended by an e�ective duration that accounts for the times at which di�erent products

July 5th – 6th, 2021, Poznań, Poland 53

Figure 1. Altered forgetting curve based on [8]

are processed. θp allows to count these times of production partially. The formulation
can be incorporated into the models by McCreery and Krajewski [6] with a di�erent
kn, by Yue at al. [9] with a di�erent ε and by Ostermeier [8] with a di�erent ∆t. The
impact of the incorporation of θp in the forgetting curve is illustrated in Fig. 1. The
higher θp is, the higher is the counted fraction of the time elapsed for the production
of di�erent products. Routine is lost in the interval of length ∆t from t3 as time when
the last unit of the product has been produced to the time t4.

3 Numerical results

Numerical studies are carried out to show the appropriateness of the proposed for-
mulation for the consideration of routine losses due to intermittent production. A
simulation study is conducted based on data from an industrial mixed-model engine
assembly line with seven products. Three di�erent volume mixes are examined di�ering
in the volume mix portion of the main product P1 (25%, 50%, 75%). The volume mix
portion of the other six products is evenly distributed among them. The resulting het-
erogeneous, intermixed and homogeneous products mixes ensure that no special case
is treated. For each of the mixes three di�erent sequence types with no grouping and a
maximum spacing of jobs, with groups of size four and with groups of size twelve are
examined. The routine loss factor θp is gradually increased from 0 to 1. Further param-
eters of the processing time function are kept constant withLRp = LR = −0.057,
np,0 = np = 50, V R = 0.01, δ = 0.15, FR = 0.0053 and RR = 0.003. Fig. 2
depicts the results of the numerical studies for mean gross learning e�ects, net learning

54 The Third International Workshop on Dynamic Scheduling Problems

Figure 2. Mean learning and deterioration e�ects

e�ects and net deterioration e�ects. Mean gross learning e�ects are the average process-
ing time reductions that a job would gain if only learning and forgetting are considered.
Mean net gross learning and deterioration e�ects take into account the net processing
time deviations from the normal processing time if next to learning and forgetting
also fatigue and recovery are modeled. If a job exhibits a processing time reduction
compared to the normal processing time this denotes a learning e�ect. Otherwise in
case of a processing time increase a deterioration e�ect is counted.

As expected, mean gross and net learning e�ects decrease with increasing θp, where-
as net deterioration e�ects increase. The magnitude of the e�ect depends strongly on
the volume mix and the degree of grouping inherent in the sequence type. The more
heterogeneous the volume mix becomes, the less strong are the gains due to learning
e�ects and they more prone is the sequence to deterioration e�ects. The higher the
degree of grouping within the sequence, the more independent the sequence becomes
in terms of learning and deterioration e�ects as a smaller number of product switches
is conducted and the runs of consecutive production of the same product are longer.
This restricts the occurrence of forgetting. An interesting observation can be made for
net learning e�ects in the 50% volume mix case. As the times during which forgetting
occurs for product P1 occur are partially of a longer duration for groups of four than
for no grouping where every second product is of product P1, they deliver similar net
learning e�ect values.

July 5th – 6th, 2021, Poznań, Poland 55

4 Future research
Future research may concern how adequate values for θp in actual industrial cases can be
derived. In general, empirical �eld studies in industrial practice and focused laboratory
experiments are required to assess how much routine is actually lost whenever a di�er-
ent product is processed. These studies have to explore which factors di�erentiating
products in mixed-model lines a�ect the routine loss and how adequate values for θp
can be derived based on the factors.

References
[1] C. D. Bailey, Forgetting and the learning curve, Management Science, 35 (1989), 340–352,

doi: 10.1287/mnsc.35.3.340.

[2] T. C. E. Cheng, G. Wang, Single machine scheduling with learning e�ect consid-
erations, Annals of Operations Research, 98 (2000), 273–290, doi: 10.1023/A:

1019216726076.

[3] Z. S. Givi, M. Y. Jaber, W. P. Neumann, Production planning in DRC systems consid-
ering worker performance, Computers & Industrial Engineering, 87 (2015), 317–327,
doi10.1016/j.cie.2015.05.005.

[4] S. Globerson, N. Levin, Incorporating forgetting into learning curves, International
Journal of Operations & Production Management, 7 (1987), 80–94, doi: 10.1108/

eb054802.

[5] M. Y. Jaber, Z. S. Givi, W. P. Neumann, Incorporating human fatigue and recovery into
the learning-forgetting process,AppliedMathematicalModelling, 37 (2013), 7287–7299,
doi: 10.1016/j.apm.2013.02.028.

[6] J. K. McCreery, L. J. Krajewski, Improving performance using workforce �exibility in
an assembly environment with learning and forgetting e�ects, International Journal of
Production Research, 37 (1999), 2031–2058, doi: 10.1080/002075499190897.

[7] D. A. Nembhard, M. V. Uzumeri, Experiential learning and forgetting for manual and
cognitive tasks, International Journal of Industrial Ergonomics, 25 (2000), 315–326,
doi: 10.1016/S0169-8141(99)00021-9.

[8] F.F. Ostermeier, The impact of human consideration, schedule types and product mix
on scheduling objectives for unpaced mixed-model assembly lines, International Jour-
nal of Production Research, 58 (2020), 4386–4405, doi: 10.1080/00207543.2019.

1652780.

[9] H. Yue, J. Slomp, E. Mollemann, D. J. Van der Zee, Worker �exibility in a parallel dual
resource constrained job shop, International Journal of Production Research, 46 (2008),
451–467, doi: 10.1080/00207540601138510.

56 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Dual-criticality scheduling on non-preemptive, dynamic
processors using RL agents

Nourhan Sakr∗
American University in Cairo, Egypt

Youssef Hussein
American University in Cairo, Egypt

Karim Farid
American University in Cairo, Egypt

Keywords: mixed-criticality scheduling, varying-speed processors, reinforcement
learning

1 Introduction and related work
Real-time embedded systems have stringent non-functional requirements on cost,
weight, and energy that give rise to the study of mixed-criticality (mc) systems, where
functionalities of di�erent criticality levels are consolidated into a shared hardware
platform (Barhorst et al. [1], Burns and Davis [6]). The literature discusses the schedu-
lability of mc systems under various conditions and objectives (Baruah et al. [3], Gu
et al. [7], Baruah et al. [4]). In this work, we study a dual-criticality, non-preemptive
system with a varying-speed uniprocessor.

This varying-speed processor makes mc scheduling dynamic: In real-time systems,
it cannot be predetermined if, when or for how long the processor would degrade, i.e.
its speed would drop. Under speed stochasticity, it is critical to guarantee the running
of high (hi) criticality jobs by their deadlines, sometimes even at the cost of not running
low (lo) criticality jobs at all, when operating under degradation.

Scheduling mc systems non-preemptively (even without degradation) isNP -hard
(Lenstra et al. [9]). Baruah and Guo [5] model an LP to preemptively schedule dual-
criticality jobs on a varying-speed processor. Agarwal and Baruah [2] further discuss
the online nature of the problem and its intractability. We agree with the authors that
mc scheduling is inherently an online problem, as it better depicts real-time scheduling
and the dynamic nature of this problem. Therefore, we devise deep reinforcement
learning (deep rl or drl) to tackle the problem presented by Baruah and Guo [5],
under both the o�ine and online setting.

∗Speaker, e-mail: n.sakr@columbia.edu

DOI: 10.14708/isbn.978-83-951298-6-5p57-62

57

2 Problem formulation
We model the system functionalities by a set of independent jobsJ , each job j is de�ned
by its release date rj , deadline dj , processing time pj (representing worst-case execution
time) and criticality level χj ∈ {lo; hi}, describing a dual-criticality system of low
and high criticality jobs. A speed-v processor runs a job j in pj

v time units.
The system assumes two modes of operation: normal (v = 1) and degradation

mode (v < 1). We assume a self-monitoring system that immediately knows when a
degradation occurs during runtime. The degradation speed v is observed then. An
mc instance is a set of mc jobs J that are schedulable on a varying-speed processor.
According to Lemma 1 in Baruah and Guo [5], J is schedulable if an earliest deadline
�rst (edf) policy schedules all jobs on a speed-1 processor and allhi jobs on a speed-vmin

processor. That is, there is a degradation bound vmin, below which J would be no
longer schedulable. Finally, a correct schedule runs all jobs by their deadlines as long as
v = 1 and guarantees all hi jobs to meet their deadlines regardless of the speed.

3 Model and evaluation
Our environment is modeled as a Markov decision process (mdp). At each timestep t,
a reinforcement learning (rl) agent interacts with an environment by receiving an
observation ot from a state space S and taking a corresponding action at from a given
action spaceA. This action is (later) rewarded or penalized (i.e. negative reward) using
a reward function r(at, ot). The agent’s goal is to maximize the reward in an episode.

Episode, states and actions. We consider one episode to be a series of decisions
taken until all jobs in J either run (and complete by the deadline) or expire (cannot
meet the deadline). At a given time t, an observation ot is a bu�er of jobs Bt ⊆ J
and the processor speed vt. Each job in the bu�er is represented by its static tuple
(rj , dj , pj , χj), and three status parameters that indicate whether the job was released,
expired (i.e. missed its deadline) or was scheduled to run. Given ot, the action function
produces a selection for the index of the job to be scheduled at t. We next outline three
environments that help us stage the transition into our target online problem.

O�ine environment. In an o�ine setting, all decisions are taken at t = 0 when
jobs are known but degradation cannot be observed. Jobs can be scheduled at anytime
t ∈ [minj{rj},maxj{dj − pj}]. We, therefore, setBt = J and vt = 1,∀t, thereby
assuming normal operation. The the rl agent schedules jobs sequentially, so all job
binary status parameters are updated before every new decision. This sequential process
also ensures non-preemption, i.e. when a job j is selected for t, the next decision is
made for time t+ pj . During this time window, some jobs may expire before selection.

58 The Third International Workshop on Dynamic Scheduling Problems

Varying bu�er (VB). In an online setting, not all jobs are known to the agent a
priori. This constraint introduces a modeling issue since the bu�er size should be �xed
for each observation, yet the number of observable jobs changes at each time step. We
create the VB environment as a transitional stage, where we �x the size of the bu�erBt
at n. If |J | > n, we add the jobs with least laxities to the bu�er. (The laxity of a job,
de�ned as lj = dj − pj , gives early warnings on expiry. When lj ≤ t, this means that
even if the agent schedules job j at t, the time would not be su�cient for it to complete
before dj . Thus, the agent is penalized for choosing such jobs.) Otherwise, we add
all jobs plus a number of dummy jobs that would bring the bu�er size to n. To avoid
scheduling dummy jobs, we label them as expired and set their criticality to lo.

Online environment. This environment is closest to mimicking real-time schedul-
ing. Our agent is now able to observe the processor speed, so we relax the constraint on
vt = 1. We buildBt similar to that of the VB environment but impose two additional
restrictions: To be added toBt, a job must have been released (rj ≤ t) and have enough
time to complete (lj ≥ t). As such, all dynamic features of our system are captured.

To the best of our knowledge, we are the �rst to use rl agents for scheduling
mc systems and, hence, have no previous rl-based benchmarks. We remedy this
limitation by using the staging process above for testing and validation. Although, we
are ultimately interested in modeling the online problem (see Sect. 1), we start with an
o�ine environment in order to leverage available o�ine benchmarks. Once validated,
our o�ine environment became the baseline for the VB environment and subsequently
the VB became the benchmark for the online environment. In this abstract, we highlight
the reward function and results of the online environment only.

Online reward function. We use the number of completed jobs as the main metric of
comparison. A secondary goal is to complete all hi jobs in J . The online agent receives
a reward equivalent to the number of executed jobs at the end of each episode. This
design achieves the highest (over episode) average reward, emphasizing the priority of
running hi jobs. Otherwise, the agent is penalized for selecting jobs that have expired
or have run before. We test other reward designs, such as applying rewards or penalties
instantaneously rather than at the end of an episode, or scaling the reward by v (for
higher rewards in case of degradation), but they were all deemed less successful.

Algorithm choice. In general, drl allows more unstructured input to the agent
with larger data. We tested rl algorithms from RLLib and Stable Baselines, where Ape-
X DQN (Horgan et al. [8]) produced the best results in scheduling jobs and learning
edf behavior.

July 5th – 6th, 2021, Poznań, Poland 59

4 Our results
Simulation. We generate various instances of J and processor speeds. The details
of data generation are masked from this abstract but rely heavily on a modi�cation of
Baruah and Guo [5]. It is worth noting that each set J is veri�ed for schedulability
before being fed to the rl agent. Our hardware limitations cap the size of our instances,
|J | at 30. We also study the settings needed for the warm-up period, number of episodes
(steps) and run 500 iterations per experiment.

Evaluation criteria. We evaluate environments based on the general reward evalua-
tion, which assesses the agent behavior against the mean reward over a series of episodes,
i.e. the average number of executed jobs per instance. Note that the maximum reward
that the agent can receive in any episode i is |Ji|, assuming all jobs complete with-
out expiring. We additionally conduct a degradation analysis, which is essential to
understanding the sensitivity of the learned policy to the degradation speed.

Figure 1. General reward evaluation results of the online environment.

Preliminary results. After its success in the o�ine environment, Ape-X was capable
of correctly scheduling around 30-40% of the provided instances when introduced to
the online environment (see Fig. 1). The limitations come from two sources: a problem-
speci�c challenge and a hardware challenge. The online environment is non-clairvoyant
and imposes unpredictable degradation in the performance. We believe that this can
be improved by augmenting the rl agent with a prediction module that can make
forecasts on the expected processor speeds. On the hardware side, we are limited by
resources (14 CPUs working in parallel and one empowered GPU), which did not allow
us to run large scale examples. The results produced in Fig. 1 are based on instances
that are 30 jobs each and a bu�er size set at n = 10. We believe that obtaining more

60 The Third International Workshop on Dynamic Scheduling Problems

resources that can run larger examples will yield better training and testing results, as
the agent has more data to learn. However, these preliminary results show a promising
approach that is worth discussing.

Degradation analysis. When the processor degrades, it is expected that the agent
prioritizes completing all hi jobs. The model should learn to sacri�ce lo jobs to free
resources for the hi ones. We measure the sensitivity of the agent to degradation speeds:
In a total of 10,000 job scenarios(episodes), we label the scenarios where the agent
completes all hi jobs as successful. These scenarios are fed to the rl agent, and the
agent’s performance is assessed under varying speeds v ∈ [0.1, 1]. Fig. 2 shows that
online environments perform slightly better than the other two environments and
that lower speeds yield decreasing performances until it plateaus at almost 15− 20%.
This phenomenon is likely attributed to the ability of the rl agent to now observe the
processor’s speed and dynamically adapt to any disruptions exposing the system.

Figure 2. Degradation analysis results for comparing the three environments

5 Future research

For future work, we wish to improve our performance using larger examples and
contrast our results against the OCBP benchmark proposed by Agarwal and Baruah [2].
We also wish to extend our work to other variants of the problem, such as preemptive
scheduling, multiprocessor systems with resource sharing, or integral data generation.
Furthermore, we plan to study other evaluation metrics, conduct an error analysis on
unsuccessful schedules, as well as assess the bene�t of augmenting a forecasting module
for predicting speeds a priori.

July 5th – 6th, 2021, Poznań, Poland 61

References
[1] J. Barhorst, T. Belote, P. Binns, J. Ho�man, J. Paunicka, P. Sarathy, J. Scoredos,

P. Stan�ll, D. Stuart, R. Urzi, A research agenda for mixed-criticality systems, white
paper, 2009.

[2] K. Agarwal, S. Baruah, Intractability issues in mixed-criticality scheduling, 30th Eu-
roMicro Conference on Real-Time Systems, 2018, article no. 11, 11:1–11:21, doi: 10.

4230/LIPIcs.ECRTS.2018.11.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H-H. Li, A. Marchetti-Spaccamela, N. Megow,
L. Stougie, Scheduling real-time mixed-criticality jobs, IEEE Transactions on Com-
puters, 61 (2011), 1140–1152, doi: 10.1109/TC.2011.142.

[4] S. Baruah, A. Easwaran, Z. Guo, Mixed-criticality scheduling to minimize
makespan, 36th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, 2016, article no. 7, 7:1–7:13, doi: 10.4230/
LIPIcs.FSTTCS.2016.7.

[5] S. Baruah, Z. Guo, Mixed-criticality scheduling upon varying speed processors, 34th
Real-Time Systems Symposium, 2013, 68–77, doi: 10.1109/RTSS.2013.15.

[6] A. Burns, R. Davis, Mixed criticality systems-a review, Department of Computer
Science, University of York, Tech. Rep. 172, 2016.

[7] C. Gu, N. Guan, Q. Deng, W. Yi, Improving OCBP-based scheduling for mixed-
criticality sporadic task systems, 19th International Conference on Embedded and
Real-Time Computing Systems and Applications, 2013, 247–256, doi: 10.1109/

RTCSA.2013.6732225.

[8] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, D. Silver, Distributed prioritized experience replay, arXiv preprint
arXiv:1803.00933, 2018.

[9] J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine schedul-
ing problems,Annals ofDiscreteMathematics, 1 (1977), 343–362,doi: 10.1016/

S0167-5060(08)70743-X.

62 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

A lower bound for sequentially placing boxes
at the moving assembly line to minimize walking time

Helmut A. Sedding∗
ZHAW Institute of Data Analysis and Process Design, Operations Research and Opera-
tionsManagement Group inWinterthur, Switzerland

Keywords: assembly line, line side placement, walking time, moving conveyor, time-
dependent scheduling

1 Introduction

An automotive assembly line typically produces a variety ofm di�erent car modelsM
in a model-mix (Thomopoulos [9]). Each model i ∈ M has a production share
rj ∈ [0, 1] such that

∑
i∈M rj = 1. The assembly line is divided into stations; we

consider only one of them. Then, our objective is to increase its productivity, which is
measured by the weighted average makespan. The corresponds to a minimization of
φ =

∑
i∈M rjCi,max, whereCi,max denotes the makespan of model i ∈M at the the

station. We achieve this through a placement optimization that reduces nonproductive
walking times, which belongs to tactical logistics planning (Boysen [1]).

The station’s worker assembles a product of model i ∈M by processing a nonper-
mutable list of ni jobs Ji = (i, 1), (i, 2), . . . , (i, ni). Set J = J1 ∪ · · · ∪ Jm denotes
the union of all n = |J | jobs of the worker. At the start of each job (i, j), the worker
needs to fetch necessary components from a corresponding box, which we place at πi,j
along the line. Then the walking time is calculated like as in Sedding [5] by the time-de-
pendent, piecewise-linear function fi,j(t) = max{−a · (t − πi,j), b · (t − πi,j)},
given slopes 0 ≤ a ≤ 1, b ≥ 0. Afterwards, the worker proceeds to assemble the job’s
components, which takes the constant assembly time `i,j ∈ Q+. Thus, the job’s pro-
cessing time is pi,j(t) = fi,j(t)+`i,j . Its completion time isCi,j(t) = t+pi,j(t). All
jobs of a model i ∈M are processed without idle time, starting at 0. Thus, the model’s
makespan can be calculated by the recurrenceCi,max = Ci,ni(· · · (Ci,1(0)) · · ·).

The box of a job (i, j) ∈ J is given a width wi,j ∈ N. We are able to decide its
position πi,j such that the boxes are placed side-by-side along the line. Hence, the
boxes are placed in a sequence between 0 and W =

∑
(i,j)∈J w(i,j). It follows that

πi,j ∈ [0,W − w(i,j)].

∗Speaker, e-mail: helmut.sedding@zhaw.ch

DOI: 10.14708/isbn.978-83-951298-6-5p63-69

63

Minimizing the objective φ by setting the box positions {π(i,j)}(i,j)∈J is anNP-
hard problem, since it includes theNP -hard single-model casem = 1 (Sedding [5]). In
this abstract, we describe a Lagrangian relaxation based lower bound for φ that accepts
partial solutions, and an algorithm to solve it inO

(
n2
)

time. This provides the core of
a branch and bound procedure introduced in the author’s dissertation [7].

2 Related literature

The casem = 1 is studied by Sedding [5]. As well, it uses time-dependent processing
times. Even though the job sequence is �xed, it is in a close relationship to time-
dependent scheduling problems, on which Gawiejnowicz [3] gives a recent review.
Such a problem allows for a variable job sequence. Note this is the case during operative
planning, where the box positions are �xed while the assembly job sequence is variable,
see Sedding [6] and, for walking in the middle of a job, Jaehn and Sedding [4].

3 Mixed integer linear program

The following mixed integer linear program places the boxes at a discrete number
of integral positions along the line. If the binary assignment variable xi,j,s for job
(i, j) ∈ J , s = 0, . . . ,W − 1 is set to one, then its box is at πi,j = s. Although
this position is limited to s ≤ W − w(i,j), we just limit it by s ≤ W − 1, which is
necessary for later results. The job’s completion timeCij sums the processing times
so far, including walking time$i,j with deviation δi,j between job start time and box
position.

φ∗ = min
∑

i∈M
riCi,ni (1a)

subject to

Ci,j =
∑

k=1, ..., j

`i,k +$i,k, (i, j) ∈ J, (1b)

$i,j ≥ −a · δi,j , (i, j) ∈ J, (1c)
$i,j ≥ b · δi,j , (i, j) ∈ J, (1d)
max{−a(Ci,j−1 − (W − 1)), b Ci,j−1} ≥ $i,j ≥ 0, (i, j) ∈ J, (1e)
δi,j = Ci,j−1 − πi,j , (i, j) ∈ J, (1f)

πi,j =
∑

s=0, ...,W−wi,j

xi,j,s · s, (i, j) ∈ J, (1g)

64 The Third International Workshop on Dynamic Scheduling Problems

∑

s=0, ...,W−wi,j

xi,j,s = 1, (i, j) ∈ J, (1h)

∑

(i,j)∈J, s′=max{0, k−wi,j+1}, ..., s
xi,j,s′ ≤ 1, s = 0, . . . ,W − 1, (1i)

xi,j,s ∈ {0, 1}, (i, j) ∈ J, s = 0, . . . ,W − 1. (1j)

4 Lower bound by Lagrangian relaxation
We describe a lower bound on φ∗ in the following. Note that to employ it in a branch
and bound procedure, it accepts a partial solution (a partial box placement), which
provides the positions {πj}j∈JF for set of fixed jobs JF ⊆ J placed between 0 and
F =

∑
j∈JF wj . This sets the values for their corresponding assignment variablesxi,j,s.

In particular, xi,j,s = 0 for (i, j) ∈ JF, s = F, . . . ,W − 1. The remaining set of
open jobs JO = J \ JF are to be placed between F andW . Therefore, xi,j,s = 0 for
(i, j) ∈ JO, s = 0, . . . , F − 1.

To devise a lower bound, we perform a Lagrangian relaxation of constraint (1c) and
constraint (1d). This introduces the corresponding Lagrangian multipliers λi,j ≥ 0,
λ′i,j ≥ 0 for (i, j) ∈ J . Then, the Lagrangian problem is φ∗Lagr(L) = minφLagr with

φLagr =
∑

i∈M
riCi,ni +

∑

(i,j)∈J
λi,j (−aδi,j −$i,j) + λ′i,j (bδi,j −$i,j) (2)

subject to L =
((
λi,j , λ

′
i,j

))
(i,j)∈J

≥ 0 and constraint (1b), (1g) to (1j), and (1e).

Note thatL can be optimized using a standard subgradient optimization, see Fisher [2].
Also, note that the lower bound inequality φ∗Lagr(L) ≤ φ∗ holds for anyL.

Substituting the completion time variable in (2) with (1b) gives

φLagr =
∑

(i,j)∈J
ri (`i,j +$i,j) +

(
bλ′i,j − aλi,j

)
δi,j −

(
λi,j + λ′i,j

)
$i,j

⇐⇒ φLagr =
∑

(i,j)∈J
`i,jζi,j +

∑

(i,j)∈J
$i,jθi,j

︸ ︷︷ ︸
ψ

+
∑

(i,j)∈J

(
aλi,j − bλ′i,j

)
πi,j

︸ ︷︷ ︸
γ

with constants ζi,j = ri +
∑

k=j+1,...,ni

(
bλ′i,k − aλi,k

)
, (i, j) ∈ J,

and θi,j = ζi,j −
(
λi,j + λ′i,j

)
, (i, j) ∈ J.

Observe that the walking time and box placement variables occur only in di�erent
constraints.

July 5th – 6th, 2021, Poznań, Poland 65

Property 4.1. In the Lagrangian problem, the walking time variables$i,j , (i, j) ∈ J ,
and box position variables πi,j , (i, j) ∈ JO, are independent.

Thus, it is possible to separately optimize walking times and box positions. This
gives us the partial objective ψ =

∑
(i,j)∈J $i,jθi,j for the walking times and γ =

∑
(i,j)∈J

(
aλi,j − bλ′i,j

)
πi,j for the box positions.

4.1 Optimizing box position values
The open job’s boxes are to be placed in a sequence between F and W . In γ, each
box (i, j) ∈ JO contributes with

(
aλi,j − bλ′i,j

)
πi,j . Hence, we get a classic total

weighted completion time scheduling problem of the boxes (as jobs), which is solved in
polynomial time by sorting them (Smith [8]).

Lemma 4.2. Optimal πi,j , (i, j) ∈ JO, are obtained by sequencing the boxes in JO
nonincreasingly by

aλi,j − bλ′i,j
wi,j

.

Thus for nO = |JO|, optimal box position values are attained inO(nO log nO) time.

4.2 Optimizing walking time values
The walking time variables$i,j , (i, j) ∈ J , are optimized by minimizing ψ. For each
(i, j) ∈ J , the value range of$i,j is limited by constraint (1e). SubstitutingCi,j−1 with
constraint (1b) gives, with constants qi,j =

∑
k=1,...,j−1 `i,k and q′i,j = qi,j −W +1,

the range

0 ≤ $i,j ≤ max

−a

1−W +

∑

k=1,...,j−1
`i,k +$i,k

, b

 ∑

k=1,...,j−1
`i,k +$i,k

⇐⇒ 0 ≤ $i,j ≤ max

−a

q′i,j +

∑

k=1,...,j−1
$i,k

︸ ︷︷ ︸
αi,j

, b

q′i,j +

∑

k=1,...,j−1
$i,k

︸ ︷︷ ︸
βi,j

. (3)

We observe for any i ∈ M and with increasing j from 1 to ni that term αi,j (as
de�ned in (3)) is nonincreasing and term βi,j (as in (3)) is nondecreasing. Hence, we
can �nd some κi ∈ {0, . . . , ni} such that αi,j > βi,j for all j = κi + 1, . . . , ni.
Given such a κi, we can replace constraint (3) by

0 ≤ $i,j ≤ αi,j if j ≤ κi, 0 ≤ $i,j ≤ βi,j if j > κi.

66 The Third International Workshop on Dynamic Scheduling Problems

Hence, depending on the value of κi, either of the two range constraints is active for
job (i, j) ∈ J .

We replace the upper bound by an equality with slack variable 0 ≤ yi,j ≤ 1. Then,

0 ≤ $i,j = yi,jαi,j if j ≤ κi, 0 ≤ $i,j = yi,jβi,j if j > κi. (4)

Property 4.3. Given κi, i ∈ M , of an optimal solution. If αi,j < 0 for any job
(i, j) ∈ J with j ≤ κi, then it is possible to decrease κi without changing the objective ψ
such that αi,j ≥ 0 for each job (i, j) ∈ J with j ≤ κi.

Proof. Given the described case, then κi ≥ 1, andαi,κi < 0 becauseαi,j is decreasing
with j. Hence, yi,κi = $i,κi = 0 to ful�ll constraint (4).

Let us decrease κi by one. Then, it is possible to leave yi,κi+1 = $i,κi+1 = 0 in
the solution. Thus, ψ remains unchanged. We repeat this step until αi,κi ≥ 0.

Corollary 1. An optimum solution exists where αi,j ≥ 0 holds for each (i, j) ∈ J with
j ≤ κi.

Lemma 4.4. For each i ∈ M , let κ∗i be the minimum value for κi that permits an
optimum solution. Then, there exists such a solution where for each job (i, j) ∈ J there is

yi,j =

0, if θi,j +
∑

k=j+1,...,ni

yi,kci,kθi,k > 0,

1, else
with ci,k =

{
−a, if k ≤ κ∗i ,
b, else.

(5)

Proof. For each model i ∈M , we show this by induction for j = ni, . . . , 1. Then,

$i,j = yi,j · ci,j

di,j +

∑

k=1,...,j−1
$i,k

︸ ︷︷ ︸
≥0

(6)

with ci,j =

{
−a, if j ≤ κ∗i ,
b, if j > κ∗i ,

di,j =

{
q′i,j , if j ≤ κ∗i ,
qi,j , if j > κ∗i .

(7)

By choice of κi and use of Property 4.3, the slack variable yi,j multiplies a nonnegative
value. Hence, $i,j is nonnegative. Moreover, $i,j in�uences $i,k for each k =
j+1, . . . , ni unless yi,k = 0. Thus,$i,j contributes to the objectiveψ not only with
factor θi,j , but moreover via$i,k with factor yi,kci,kθi,k. The total contribution of
$i,j to ψ is thus with factor θi,j +

∑
k=j+1,...,ni

yi,kci,kθi,k. If this factor is positive,
then the lowest slack value yi,j = 0 minimizesψ. If it is negative, then the highest slack
value yi,j = 1 is optimal. If the factor is zero, any value for yi,j is optimal.

July 5th – 6th, 2021, Poznań, Poland 67

Let κi ∈ {0, . . . , ni} for each i ∈ M be the maximum κi for which inequality
−aq′i,κi ≥ 0 holds.

Property 4.5. An optimum solution exists where κi ≤ κi for each i ∈M .

Proof. Assume we are given an optimum solution. Naturally, all walking time vari-
ables $i,j , (i, j) ∈ J , are nonnegative. For each i ∈ M , both

∑
k=1,...,j−1$i,k

and q′i,j are nondecreasing with respect to j, while −aq′i,j is nonincreasing. Hence
if−aq′i,κ′i < 0 for any (i, κ′i) ∈ J with κ′i ≤ κi, then αi,j < 0 for j = κ′i, . . . , κi.
However, by Property 4.3, it is possible to setκi < κ′i such that the solution is optimum
and−aq′i,j < 0 as well as αi,j ≥ 0 hold for any (i, j) ∈ J with j ≤ κi.

The above results allow us to describe an algorithm to minimize the walking time
variables. In an outer loop, the algorithm sets κi = 0, . . . , κi for i ∈ M . Given κi,
recurrence (5) is used to set yi,j for each (i, j) ∈ J , which also sets$i,j and objective
value ψ. The smallest obtained objective value is optimal. This takes quadratic time in
terms of ni. Over allmmodels, the worst case runtime isO

(∑
i∈M n2i

)
≤ O

(
n2
)

.
Together with the algorithm in Lemma 4.2 we are thus able to �nd a solution.

Theorem 4.1. An optimum solution to φ∗Lagr(L) can be computed inO
(
n2
)
time.

References

[1] N. Boysen, S. Emde, M. Hoeck, M. Kauderer, Part logistics in the automotive
industry: Decision problems, literature review and research agenda, European
Journal of Operational Research, 242 (2014), 107–120, doi: 10.1016/j.ejor.

2014.09.065.

[2] M. L. Fisher, The Lagrangian relaxation method for solving integer programming
problems, Management Science, 50 (2004), 1861–1871, doi: 10.1287/mnsc.

1040.0263.

[3] S. Gawiejnowicz, A review of four decades of time-dependent scheduling: main
results, new topics, and open problems, Journal of Scheduling, 23 (2020), 3–47,
doi: 10.1007/s10951-019-00630-w.

[4] F. Jaehn, H. A. Sedding, Scheduling with time-dependent discrepancy times, Jour-
nal of Scheduling , 19 (2016), 737–757, doi: 10.1007/s10951-016-0472-2.

[5] H. A. Sedding, Line side placement for shorter assembly line worker paths, IISE
Transactions 52 (2020), 181–198, doi: 10.1080/24725854.2018.1508929.

68 The Third International Workshop on Dynamic Scheduling Problems

[6] H. A. Sedding, Scheduling jobs with a V-shaped time-dependent process-
ing time, Journal of Scheduling, 23 (2020), 751–768, doi: 10.1007/

s10951-020-00665-4.

[7] H. A. Sedding, Time-Dependent Path Scheduling: AlgorithmicMinimization of
Walking Time at theMoving Assembly Line, Springer Vieweg, Wiesbaden, 2020,
doi: 10.1007/978-3-658-28415-2.

[8] W. E. Smith, Various optimizers for single-stage production, Naval Research
Logistics Quarterly, 3 (1956), 59-66, doi: 10.1002/nav.3800030106.

[9] N. T. Thomopoulos, Line balancing-sequencing for mixed-model assembly,Man-
agement Science, 14 (1967), B59–B75, doi: 10.1287/mnsc.14.2.B59.

July 5th – 6th, 2021, Poznań, Poland 69

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Heuristic algorithms for solving hard scheduling problems
with positional penalties and controllable processing times

Dvir Shabtay∗
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Baruch Mor
Ariel University, Ariel, Israel

Liron Yedidsion
Amazon Research, Amazon, Seattle, USA

Keywords: scheduling, resource-dependent processing times, resource allocation,
bi-criteria optimization, heuristics

1 Introduction and problem de�nition
In this paper we provide a set of heuristic algorithms that is capable of practically
solving a large set ofNP -hard single-machine scheduling problems involving resource
allocation decisions. The set of problems we study share the common property that the
scheduling criterion can be represented as one that includes positional penalties. Among
the scheduling criteria sharing this property are: the classical problem of minimizing
the total completion time, the problem of minimizing the variation in the waiting
times, the problem of minimizing the variation in completion times, and a set of at
least four earliness/tardiness problems involving due-date assignment decisions.

The set of single-machine scheduling problems we study here can be stated as
follows. We are given a set of n jobs,J = {1, ..., n}, that is available at time zero and
is to be non-preemptively scheduled on a single-machine. The processing time of job j,
denoted by pj(uj), is a convex decreasing function of the amount of continuous and
non-renewable resource, uj , allocated to its processing operation (uj is a continuous
decision variable to be determined by the scheduler), and is given by:

pj(uj) = Bj + (wj/uj)
k , (1)

where for job j (j ∈ {1, 2, ..., n}), Bj is a lower bound on the processing time, wj
is the workload, and k is a parameter common to all jobs. Various special cases of
the processing time function in (1) has been used extensively in continuous resource

∗Speaker, e-mail: dvirs@bgu.ac.il

DOI: 10.14708/isbn.978-83-951298-6-5p71-76

71

allocation theory (see, e.g., Lee and Li [2], Shakhlevich and Strusevich [9], Oron [5],
and Shabtay and Zo� [8]) as it captures many real life applications (in most of these
cases it is assumed thatBj = 0 for j = 1, ..., n). For example, Monma [3] pointed out
that the time required to perform many actual government and industrial operations
can be expressed by (1) with Bj = 0 for j = 1, ..., n and k = 1, and that the time
required to perform very large scale integration (VLSI) circuit design operations may
also be represented by (1) withBj = 0 for j = 1, ..., n and k = 0.5.

A solution S for our set of single-machine scheduling problems with resource-
dependent processing times is de�ned by a feasible resource allocation vector, u =
(u1, u2, ..., un), and a job schedule on the single-machine. In the set of problems we
consider here, an optimal solution does not include machine idle times. Therefore, a
job schedule is de�ned by a processing permutation, φ = (φ (1) , φ (2) , ..., φ (n)), of
the n jobs on the single-machine, where φ (i) is the job that is assigned to position i
in φ. The quality of a solution S = (φ,u) is measured by two di�erent criteria. The
�rst, F1, is a scheduling criterion. We focus on a set of problems sharing the common
property that this criterion can be represented using the following format:

F1 =
n∑

i=1

ξipφ(i)
(
uφ(i)

)
, (2)

where ξi is a positive integer representing the positional penalty per unit processing
time that results from assigning any job to position i in the job processing order. The
second, F2, is the total resource allocation cost, de�ned by

F2 =
n∑

j=1

vjuj , (3)

where vj is the cost of assigning one unit of resource to the processing of job j.
Our aim is to �nd a solution S that minimizes the scheduling criterion, F1 =∑n
i=1 ξipφ(i)

(
uφ(i)

)
, subject to the condition that F2 =

∑n
j=1 vjuj ≤ Uv , where

Uv is a prede�ned upper bound on the total resource-consumption cost. Following the
three-�eld notation for scheduling problems by Graham et al. [1], and the extensions
for resource-dependent processing times by Shabtay and Steiner [7], we denote this set
of problems by 1

∣∣∣conv,
∑n

j=1 vjuj ≤ Uv
∣∣∣
∑n

i=1 ξipφ(i)
(
uφ(i)

)
.

2 Literature review
Yedidsion et al [10] showed that there are many single-machine scheduling problems in
which the scheduling criterion can be represented as a special case of (2). For example,
if the scheduling criterion, F1, is the total completion time, then the corresponding

72 The Third International Workshop on Dynamic Scheduling Problems

scheduling criterion, F1 =
∑n

j=1Cj , can be considered as a special case of F1 in Eq.
(2) with positional penalty ξi = n − i + 1 for i = 1, ..., n. As another example,
the problem of minimizing the total completion time deviation, such that F1 =∑n

s=1

∑n
t=s |Cs − Ct|, can also be viewed as a special case of F1 in Eq. (2) with

ξi = (n − i)(n − i + 1) for i = 1, ..., n. As a last example, Yedidsion et al [10]
provided a summary of a set of single-machine scheduling problems with assignable
due dates, which can also be represented as a special case of F1. In this set of problems
the exact value of ξi depends on the method by which due dates are assigned to jobs.
For example, Yedidsion et al [10] showed (based on the result by Panwalkar [6]) that
when a common due date, d, has to be assigned to all jobs, the problem of minimizing
F1 = α

∑n
j=1Ej+β

∑n
j=1 Tj+nγd, whereEj andTj are the earliness and tardiness

of job Jj , respectively, and α, β, and γ are non-negative parameters representing one
unit of earliness, tardiness and due-date cost, can also be represented in the format of
Eq. (2). In this case the positional penalties are given by

ξi =

{
α (i− 1) + γn for i ≤ i∗
β (n− i+ 1) for i > i∗

(4)

where position i∗ can be computed in constant time.
Shabtay and Steiner [7] studied the makespan crierion, i.e., the case where ξi = 1

for 1, ..., n. They show that the corresponding 1
∣∣∣conv,

∑n
j=1 uj ≤ Uv

∣∣∣Cmax prob-

lem (or equivalently the 1
∣∣∣conv,

∑n
j=1 vjuj ≤ Uv

∣∣∣
∑n

i=1 pφ(i)
(
uφ(i)

)
problem) is

solvable inO(n) time.
Lee and Lei [2] studied the special case where the scheduling criterion is the total

completion time (and accordingly ξi = n−i+1 for i = 1, ..., n) problem. They proved
that the corresponding 1

∣∣∣conv,
∑n

j=1 uj ≤ Uv
∣∣∣
∑n

j=1Cj problem (or equivalently

the 1
∣∣∣conv,

∑n
j=1 vjuj ≤ Uv

∣∣∣
∑n

i=1(n−i+1)pφ(i)
(
uφ(i)

)
problem) is solvable in

O(n log n) time if eitherBj = B orwj = w for j = 1, ..., n. They also conjectured
that the general 1

∣∣∣conv,
∑n

j=1 uj ≤ Uv
∣∣∣
∑n

j=1Cj problem is NP-hard, but did
not provide any formal proof to support their conjecture.

Yedidsion and Shabtay [11] provided adequate proof of the above conjecture by
showing that the 1

∣∣∣conv,
∑n

j=1 vjuj ≤ Uv
∣∣∣
∑n

i=1 ξipφ(i)
(
uφ(i)

)
problem isNP-

hard for any set of ξi parameters satisfying ξl 6= ξm for any l 6= m, even when vj = 1
for j = 1, ..., n. Moreover, they constructed an approximation algorithm for solving
the most general 1

∣∣∣conv,
∑n

j=1 vjuj ≤ Uv
∣∣∣
∑n

i=1 ξipφ(i)
(
uφ(i)

)
problem, which

is based on solving a weakly polynomial number of 1 |conv|∑n
i=1 ξipφ(i)

(
uφ(i)

)
+∑n

j=1 vjuj problems (each of which is solvable inO(n3) time).

July 5th – 6th, 2021, Poznań, Poland 73

3 Research objectives and our contribution

The fact that the 1
∣∣∣conv,

∑n
j=1 vjuj ≤ Uv

∣∣∣
∑n

i=1 ξipφ(i)
(
uφ(i)

)
problem isNP-

hard for any set of ξi parameters satisfying ξl 6= ξm for any l 6= m, implies that
there is a need for designing exact algorithms to solve small instances of this set of hard
problems, along with heuristic algorithms that will be able to (heuristically) tackle
larger instances of this set of problems. The only algorithm exists in the literature, is
the approximation algorithm proposed by Yedidsion and Shabtay [11]. However, this
algorithm wasn’t tested against any other algorithm or against the value of a tight lower
bound. Our aim is to help closing this gap in the literature.

We begin by providing the optimal resource allocation strategy as a function of
the job sequencing decision. This enable us to reduce the problem into an equivalent
(non-linear) problem which involve only sequencing decisions. We then suggest �ve
di�erent heuristics algorithms to solve the reduced sequencing problem:

• Heuristic 1 (H1): Based on a simple sorting rule (requires onlyO(n log n) time).

• Heuristic 2 (H2): A job-insertion heuristics (similar to that used in Nawza et al.
[4]), which requiresO(n3) time.

• Heuristic 3 (H3): The approximation algorithm by Yedidsion and Shabtay [11]
(which requiresO(n3+p) time, for some prede�ned constant p).

• Heuristic 4 (H4): Implementation of the classical genetic algorithm.

• Heuristic 5 (H5): Implementation of the classical simulated annealing algorithm.

We also obtain a method to derive a tight lower bound for the minimal objective
value (we leave its explanation in view of space limitations). We then perform an
experimental study to test the performance of the heuristic algorithms.

Algorithms Hi for i = 1, 2, 3, 4, 5 were implemented in C++ and run on an
Intel (R) Core ™ i7-8650U CPU @ 1.90 GHz 16.0 GB RAM platform. The program-
ming platform consisted of the ’Visual Studio’ software. Moreover, to better evaluate
the quality of the suggested algorithms when solving large instances, we included an-
other heuristic (referred to hereafter as heuristic H6) which simply selects the best
permutation out of 50, 000 randomly generated permutations. For each out of several
combinations of k and n, we randomly generated 50 numerical instances. All parame-
ters were drawn from an integer uniform distribution ranging between 1 and 20 for
Bj ,wj and vj , and between 0.5n102−1/k and 1.5n102−1/k forUv .

Partial information regrading the results for the total completion time criterion
appears in Table 1. It includes the average relative gap of the value of the solution
obtained by Heuristic (Hi) from the lower bound value (avgδi), and the average

74 The Third International Workshop on Dynamic Scheduling Problems

running time of each heuristic (r.t), except forH1 andH6 for which the running time
was negligible even for n = 150.

Table 1. Comparison between heuristics for large instances

n k H1 H2 H3

avgδ1 avgδ2 r.t (sec) avgδ3 r.t (sec)

50 0.5 0.0123 0.0112 0.002 0.0047 1.138

50 1 0.0040 0.0040 0.002 0.0011 0.960
50 2 0.0147 0.0120 0.002 0.0001 0.837
100 0.5 0.0114 0.0106 0.012 0.0032 30.743
100 1 0.0063 0.0063 0.013 0.0029 29.518
100 2 0.0149 0.0132 0.013 0.0003 37.825
150 0.5 0.0081 0.0074 0.042 0 224.30
150 1 0.0075 0.0075 0.042 0.0046 306.15
150 3 0.0452 0.0392 0.041 0.0203 464.19

n k H4 H5 H6

avgδ4 r.t (sec) avgδ5 r.t (sec) avgδ6

50 0.5 0.0049 0.114 0.0063 0.309 0.0906

50 1 0.0013 0.110 0.0028 0.298 0.1057
50 2 0.0002 0.111 0.0032 0.308 0.1331
100 0.5 0.0032 0.212 0.0065 0.833 0.1302
100 1 0.0030 0.212 0.0056 0.811 0.1584
100 2 0.0004 0.212 0.0062 0.834 0.1905
150 0.5 0.0001 0.426 0.0047 1.582 0.1505
150 1 0.0047 0.314 0.0072 1.521 0.1837
150 2 0.0010 0.311 0.0080 1.555 0.2208

It appears that all of our heuristics (especially the three last ones) are capable of
solving large instances of the problem with a negligible gap between the value of the
heuristic’s solution and the value of a tight lower bound on the optimal solution value.

Finally, we design exact procedures to optimally solve small instances of the problem.
One which is based on a Convex Integer Programming (CIP) formulation of the
equivalent sequencing problem, and the other based on a branch and bound (B&B)
formulation of the equivalent sequencing problem.

July 5th – 6th, 2021, Poznań, Poland 75

4 Future research
In future research, we aim to conduct numerical experiments with mentioned above
exact algorithms, in order to learn about the exact instance size that they are capable to
optimally solve in reasonable time.

References
[1] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and ap-

proximation in deterministic sequencing and scheduling: a survey, Annals of Discrete
Mathematics, 5 (1979), 287–326, doi: 10.1016/S0167-5060(08)70356-X.

[2] C. Y. Lee, L. Lei, Multiple-project scheduling with controllable project duration and
hard resource constraint: some solvable cases, Annals of Operation Research, 102 (2001),
287–307, doi: 10.1023/A:1010918518726.

[3] C. L. Monma, A. Schrijver, M. J. Todd, V. K. Wei, Convex resource allocation problems
on directed acyclic graphs: duality, complexity, special cases and extensions,Mathematics
of Operations Research, 15 (1990), 736–748, doi: 10.1287/moor.15.4.736.

[4] M. Nawaz, E. E. Enscore, I. Ham, Heuristic algorithm for the m-machine, n-job �ow-
shop sequencing problem, Omega, 11 (1983), 91–95, doi: 10.1016/0305-0483(83)

90088-9.

[5] D. Oron, Scheduling controllable processing time jobs with position dependent work-
load, International Journal of Production Economics, 173 (2016), 153–160, doi: 10.

1016/j.ijpe.2015.12.014.

[6] S. S. Panwalkar, M. L. Smith, A. Seidmann, Common due date assignment to minimize
total penalty for the one machine scheduling problem, Operations Research, 30 (1982),
391–399, doi: 10.1287/opre.30.2.391.

[7] D. Shabtay, G. Steiner, Survey of scheduling with controllable processing times, Discrete
AppliedMathematics, 155 (2007), 1643–1666, doi: 10.1016/j.dam.2007.02.003.

[8] D. Shabtay, M. Zo�, Single machine scheduling with controllable processing times and
unavailability period to minimize the makespan, International Journal of ProductionEco-
nomics, 198 (2018), 191–200, doi: 10.1016/j.ijpe.2017.12.025.

[9] N. V. Shakhlevich, V. A. Strusevich, Pre-emptive scheduling problems with control-
lable processing times, Journal of Scheduling, 8 (2005), 233–253, doi: 10.1007/

s10951-005-6813-1.

[10] L. Yedidsion, D. Shabtay, M. Kaspi, Complexity analysis of an assignment problem with
controllable assignment and its applications in scheduling, Discrete AppliedMathemat-
ics, 159 (2011), 1264–1278, doi: 10.1016/j.dam.2011.04.001.

[11] L. Yedidsion, D. Shabtay, The resource dependent assignment problem with a convex
agent cost function, European Journal of Operational Research, 261 (2017), 486–502,
doi: 10.1016/j.ejor.2017.03.004.

76 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Relative robust total completion time scheduling problem
on a single machine

Prabha Sharma∗
The NorthCap University, Gurugram, India

Diptesh Ghosh
Indian Institute of Management, Ahmedabad, India

Sandeep Singh
The NorthCap University, Gurugram, India

Keywords: relative robust optimization, discrete scenario, adjacent scenario, adjacent
job sequence, local search

1 Introduction
Uncertainties in a production environment occur in the form of machine breakdowns,
non-availability of quality tools, unstable work force and in many more other forms as
stated by Yang and Yu [1]. Kouvelis and Yu [2] have suggested using a �nite discrete
set of values or values in a �nite interval as processing times for each job to adequately
represent these uncertainties. We follow this line of research.

2 Problem formulation
In this paper, we consider the case in which a �nite discrete set of processing times is
assigned to each of n jobs, which are to be processed on a single machine. Let

Pj = (p1j , p2j , . . . , prj)

be the set of r processing times for job j, where j = 1, 2, . . . , n. A scenario s associates
a processing time for each job jfrom its respective set Pj . The collection of all the valid
scenarios is denoted byS. Since we consider all possible combinations of the processing
times as scenarios, hence |S| = rn.

Let us consider a job sequence π and a scenario s ∈ S. LetC(π, s) denote total
completion time of the job sequence π with respect to scenario s and letC∗(s) denote
minimum completion time for scenario s, obtained by using the Shortest Processing
Time first (SPT) rule.

∗Speaker, e-mail: prabhasharma@ncuindia.edu

DOI: 10.14708/isbn.978-83-951298-6-5p77-81

77

The deviation of sequence π for the scenario s ∈ S is de�ned as d(π, s) =
C(π, s) − C∗(s). A scenario s ∈ S, for which d(π, s) is maximum is called the
worst case scenario for π. The relative robust total completion time problem is one of
�nding a job sequence whose maximum deviation is the smallest, i.e., to �nd

min
π

max
s
{C(π, s)− C∗(s)} . (1)

Yand and Yu [1] have shown that the problem isNP -complete, even when |S| = 2.
They have also designed an exact algorithm for solving the robust total completion
time problem using dynamic programming and two polynomial time heuristics.

In this work, we propose a local search based algorithm to solve the relative robust
total completion time problem. The following lemma characterizes the worst case
scenario for any sequence π.

Lemma 1. For any sequence π, its worst case scenario will either have its job processing
times at their maximum or at their minimum.

Proof. Consider an arbitrary scenario in which the processing time for job j is pj . Let
job j be in the i1-th position in sequence Π, and be in the i2-th position in the sequence
of non-increasing processing times in that scenario. The contribution of pj in the
relative deviation for Π in this scenario is ((n−i1+1)−(n−i2+1))pj = (i2−i1)pj .
We have to consider two cases: Case 1, when i1 < i2, and Case 2, when i1 > i2.

Case 1. In this case, we will show that the relative deviation increases for the scenario
in which pj changes to pj if all other processing times are held constant. Suppose pj
increases to pj . This increase either causes the order of jobs in the SPT sequence to
remain the same, or to change. If the order of jobs in the SPT sequence remains the
same, the relative deviation increases by (i2 − i1)(pj − pj) > 0.

Next, suppose the order of jobs change if pj increases to pj . After this change, let
the position of job j be i2 + k in the SPT sequence, with k > 0. This means that the
jobs in positions i2 +1 through i2 +k in the original SPT sequence move one position
to the left. After such a change, the contribution of job j to the relative di�erence is

((n− i1 + 1)− (n− (i2 + k) + 1))pj = (i2 − i1)pj + kpj .

The jobs in positions i2 + 1 through i2 + k in the original SPT sequence reduce the
relative deviation by pi2+1 + · · ·+ pi2+k. So the net increase in the relative deviation
is

(i2 − i1)pj + kpj − (pi2+1 + · · ·+ pi2+k) = (i2 − i1)pj +

k∑

r=1

(pj − pi2+r)

which is positive since pj ≥ pi2+r for 1 ≤ r ≤ k.

78 The Third International Workshop on Dynamic Scheduling Problems

Case 2. In this case, we will show that the relative deviation increases for the scenario
in which pj changes to pj if all other processing times are held constant. Suppose the
processing time for job j reduces from pj to pj . This will cause the sum of completion
times for given sequence to reduce by (n− ii + 1)(pj − pj).

Next, suppose this reduction in processing time causes the sequence of jobs in the
SPT sequence to change. Since the processing time of job j reduces, suppose that after
the change it occupies the position i2 − k with k > 0. This would cause the jobs in
positions i2 − 1 through i2 − k in the original SPT sequence to move one position to
the right in the new SPT sequence. Let us denote the processing times of these jobs as
p[i2−1] through p[i2−k]. After the reduction in processing time of job j, the sum of
completion times of the jobs in the SPT sequence reduces by

(n− i2 + 1)pj − (n− (i2 − k) + 1)pj + p[i2−1] + · · ·+ p[i2−k]

which can be rewritten as

(n− i2 + 1)(pj − pj) +
k∑

r=1

(p[i2−r] − pj).

The increase in relative deviation due to the change in the processing time of job j
is obtained by subtracting the reduction in the sum of completion times of the given
sequence from the reduction in the sum of completion times of the SPT sequence. So
the increase in relative deviation is given by

(n− i2 + 1)(pj − pj) +
k∑

r=1

(p[i2−r] − pj)− (n− ii + 1)(pj − pj)

= (i1 − i2)(pj − pj) +

k∑

r=1

(p[i2−r] − pj).

This increase in relative deviation is positive since i1 > i2 and each of p[i2−1] through
p[i2−k] is greater than pj . The result follows.

Lemma 1 simpli�es the search for the worst case scenario on the polytope of all
scenarios by reducing the number of scenarios to be searched from rn to 2n.

We use the following de�nitions of adjacency to describe neighborhoods for the
problem under consideration.

De�nition 1 (Adjacency of scenarios). Two scenarios s1 and s2 ∈ S are adjacent if
s1 and s2 di�er in exactly one component value, i.e., the processing time of only one job
is di�erent in the two scenarios.

July 5th – 6th, 2021, Poznań, Poland 79

De�nition 1 implies that for each scenario in the polytope of all scenarios in S we
have n(r − 1) adjacent scenarios.

De�nition 2 (Adjacency of permutations, Gaiha and Gupta [3]). Two permuta-
tions π1 and π2 of sequence (1, 2, . . . , n) are adjacent, if π2 is obtained from π1 by
interchanging positions of i and j, where if π1(i) = k, then π1(j) = k + 1 and
k = 1, 2, . . . , n− 1.

De�nition 2 implies that a job sequence has (n− 1) adjacent job sequences.

3 Local search algorithm
In this section, we describe a two phase local search algorithm which has been designed
for solving the relative robust total completion time problem. This algorithm uses
Procedure 1 which computes the best neighbor of a given sequence π0 and Procedure 2
which �nds a heuristic estimate of the maximum deviation for a given sequence π. We
start with a given sequence π0 as the current sequence, and repeat Procedure 1 until
the current sequence is locally optimal, i.e., none of its neighbors have a maximum
deviation that is smaller than its maximum deviation.

Procedure 1: Consider a sequence π0 and use De�nition 2 to obtain the n(r − 1)
neighboring (i.e., adjacent) scenarios. For each of the neighboring scenarios, use Pro-
cedure 2 to compute the maximum deviation for the scenario, and hence obtain the
neighboring scenario π with the minimum of the maximum deviation values. If the
maximum deviation ofπ is less than or equal to that ofπ0, replaceπ0 withπ and repeat
Procedure 1.
Procedure 2: Consider a sequence π, and consider an arbitrary scenario so as the
current scenario. Compute the deviation d(π, so). Using De�nition 1 obtain n(r− 1)
scenarios adjacent to the current scenario and compute the deviations for each of the
neighboring scenarios. Move to the scenario with maximum deviation. In case of tie
with the starting scenario so, move to the adjacent scenario tied with so. Continue till
the value of the maximum deviation does not improve for three iterations.

Numerical results are very encouraging. The search appears to be linear time and
for small problems exact values of the worst case scenario was obtained.

4 Future research
In future, we wish to make an attempt to fully characterize the worst case scenario
for any job sequence so that Phase-I search will not be required. Even if this does not
happen using Lemma 1, the search on the polytope of all scenarios can be simpli�ed.

80 The Third International Workshop on Dynamic Scheduling Problems

We also plan to conduct extensive numerical experiments in order to determine the
time complexity and quality of the solutions obtained.

References
[1] J. Yang, G. Yu, On the robust single machine scheduling problem, Journal of Com-

binatorial Optimization, 6 (2002), 17–33, doi: 10.1023/A:1013333232691.

[2] P. Kouvelis, G. Yu, Robust discrete optimization and its applications, Springer Sci-
ence & Business Media, Berlin, 2013, doi: 10.1007/978-1-4757-2620-6.

[3] P. Gaiha, S. K. Gupta, Adjacent vertices on a permutohedron, SIAM Journal on
AppliedMathematics, 32 (1977), 323–327, doi: 10.1137/0132025.

July 5th – 6th, 2021, Poznań, Poland 81

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

An exact algorithm for a two-machine time-dependent
scheduling problem

Weronika Skowrońska∗
Adam Mickiewicz University, Poznań, Poland

Stanisław Gawiejnowicz
Adam Mickiewicz University, Poznań, Poland

Keywords: time-dependent scheduling, parallel machines, deteriorating jobs, total
completion time, V-shape property

1 Introduction
A number of scheduling problems exists, in which jobs processed later are more time-
consuming than those started earlier. In the problems, the variable processing time of a
job may be de�ned as a function of the starting time of the job. Problems of this type
are called time-dependent scheduling problems and appear in many applications such as
scheduling maintenance procedures, multiple loan repayment problems, �re �ghting
problems etc. Most commonly are studied time-dependent scheduling problems with
job processing times de�ned by non-decreasing functions. In this case, job processing
times deteriorate in time, i.e., a job started later has a larger processing time compared
to case when it starts earlier. Hence, such jobs are called deteriorating jobs and are
intensively studied recently (see, e.g., Agnetis et al. [1], Gawiejnowicz [5], Strusevich
and Rustogi [8]).

A separate group of scheduling problems constitute those in which an optimal job
sequence J[1], J[2], . . . , J[n] can be divided into two parts: sequence L such that

p[1] ≥ p[2] ≥ · · · ≥ p[k]

for all J[i] ∈ L, followed by sequence R containing remaining jobs such that

p[k] ≤ p[k+1] ≤ · · · ≤ p[n]

for all J[i] ∈ R. In other words, in optimal schedules for the problems jobs are
scheduled in non-increasing (non-decreasing) order with respect to processing times
before the job with the smallest (the largest) processing time. In time-dependent

∗Speaker, e-mail: wersko3@st.amu.edu.pl

DOI: 10.14708/isbn.978-83-951298-6-5p83-88

83

scheduling problems the sequencesL andR are de�ned similarly, with this di�erence
that instead of job processing times p[j] are applied deterioration rates b[j] de�ned as in
Section 2. Schedules of this form are called V-shaped schedules and are studied in the
context of scheduling problems with both �xed and variable job processing times (see,
e.g., Eilon and Chowdhury [3], Mosheiov [9], Gawiejnowicz [4, 5]).

In this talk, we consider a parallel machine time-dependent scheduling problem
which, to the best of our knowledge, was not studied earlier. We present an algorithm
generating all V-shaped schedules for the problem, implemented in Python 3.8.

2 Problem formulation and its properties

The problem under consideration can be formulated as follows. We are given a set
of n independent, deteriorating jobs J1, J2, . . . , Jn to be scheduled on two parallel
identical machinesM1 andM2. The processing time of job Jj is equal to

pj(t) = 1 + bjt, (1)

where t ≥ 0 is the starting time of the job and bj > 0 is deterioration rate of Jj ,
1 ≤ j ≤ n. The aim is to �nd a schedule minimizing the total completion time of
all jobs,

∑n
j=1Cj , where Cj denotes the completion time of job Jj , 1 ≤ j ≤ n.

Applying the extended three-�eld notation (Gawiejnowicz [5]), we will denote the
problem as P2|pj = 1 + bjt|

∑
Cj .

Problem P2|pj = 1 + bjt|
∑
Cj is a generalization of single machine problem

1|pj = 1 + bjt|
∑
Cj which is one of the main open problems in time-dependent

scheduling (see, e.g., Gawiejnowicz [4, 6] for a summary of research on this prob-
lem). Problem P2|pj = 1 + bjt|

∑
Cj is also a special case of problem P2|pj =

aj + bjt|
∑
Cj , where aj ≥ 0 is the basic processing time of job Jj , 1 ≤ j ≤ n.

The latter problem is NP-hard, since in case when aj = 0 it reduces to problem
P2|pj = bjt|

∑
Cj which isNP-hard (Kononov [7], Chen [2]). Though we sup-

pose that problem P2|pj = 1 + bjt|
∑
Cj isNP -hard as well, a formal proof of its

NP -hardness is not known.
Based on the V-shape property of problem 1|pj = 1 + bjt|

∑
Cj (Mosheiov

[9]), one can easily observe than an optimal schedule for problem P2|pj = 1 +
bjt|

∑
Cj is V-shaped on each machine. This property may be used in a recursive

algorithm generating all V-shaped schedules for the problem which we present in
Section 3. Though it is an exponential algorithm, since there exist O(2n) V-shaped
sequences of length n, it may be useful in studying the structure of optimal schedules.
This, in turn, may help to establish its complexity.

84 The Third International Workshop on Dynamic Scheduling Problems

3 Results
In this section, we present our exact algorithm for solving the two-machine problem
formulated in Section 2.

The main idea of this algorithm is as follows. First, we generate two subsets of jobs
assigned to both machines. Next, for such a pair of subsets, we generate all V-shaped
sequences on both machines, calculating for each pair of such V-shaped sequences a
corresponding value of the criterion function. Comparing the values for every two
successively generated V-shaped schedules, we �nd the optimal schedule.

More formally, our algorithm one can formulate using three main procedures:
DIVISIONS, GEN V SHAPES and OPTIMUM.

The �rst of the procedures, DIVISIONS, is responsible for creating every possible
division of a set of n jobs with processing times in the form of (1) into two subsets,
assigned to machineM1 and machineM2, respectively.

Algorithm 1 DIVISIONS(S, F, P, n)

1: SPLITTED,FUNC COEFFS = []
2: for int I in (0, len(p)/2) do
3: M1,M2, F1, F2 = []
4: SEQ = P [I]
5: for int J in (0, len(SEQ)) do
6: if SEQ[J] = 0 then
7: APPEND S[J] toM1

8: APPEND F [J] to F1

9: else
10: APPEND S[J] toM2

11: APPEND F [J] to F2

12: end if
13: end for
14: APPEND [M1,M2] to SPLITTED
15: APPEND [F1, F2] to FUNC COEFFS
16: end for
17: return SPLITTED, FUNC COEFFS

Procedure GEN V SHAPES generates all V-shaped sequences out of the two
subsets assigned to machinesM1 andM2, and calculates the value of criterion function,∑
Cj , for each such a sequence.

July 5th – 6th, 2021, Poznań, Poland 85

Algorithm 2 GEN V SHAPES(n)

Input: I ARR,C ARR,N = LEN(I ARR)RES = [],
1: OPT = [string SEQUENCE = [], intVAL= INFINITY]
2: functionGEN V SHAPE(I ARR,C ARR,N,RES,OPT, F, IND,K)
3: if N = 0 then
4: return RES, [[],[0]]
5: else if N = 1 then
6: return I ARR, [[I ARR][1]]
7: end if
8: L = CONCAT (I ARR[K], C ARR)
9: R = CONCAT (C ARR, I ARR[K])

10: if K = N then
11: RES = L+R
12: for I in RES do
13: SUM CJ = 0
14: for J in I do
15: V = IND[J]
16: SUM CJ+ = 1 + FV ∗ SUM CJ
17: if SUM CJ < OPT [V AL] then
18: OPT = [I, SUM CJ]
19: end if
20: end for
21: end for
22: return RES, OPT
23: end if
24: GEN V SHAPE(I ARR, L, N, RES, OPT, F, IND, K+1)
25: GEN V SHAPE(I ARR, R, N, RES, OPT, F, IND, K+1)
26: return RES, OPT
27: end function

Finally, a straight-forward procedure OPTIMUM returns the optimal schedule
among all generated V-shaped schedules.

We illustrate application of our algorithm using the following numerical example.

Example 1. Let us assume that we have n = 5 jobs J1, J2, . . . , J5 such that S =
[1, 2, 3, 4, 5] and F = [7, 4, 1, 3, 8].

ThenP is the list of all 0-1 sequences of length 5, and as result we obtain schedule in
which jobs J3, J4 and J5 are scheduled on machineM1, jobs J1 and J2 are scheduled
on machineM2 (see Fig. 1). The value of criterion

∑
Cj equals 24.

86 The Third International Workshop on Dynamic Scheduling Problems

M1

M2

0 1 2 3 4 5 6 7 8 9 10 11

J5 J4 J3

J1 J2

Figure 1. Optimal schedule generated in Example 1

4 Further research

Future research on problemP2|pj = 1+ bjt|
∑
Cj may concern the following three

topics. First, one should establish the time complexity of the problem. Second, one
should �nd other its properties than the one related to the V-shapeness of optimal
schedule. Finally, the algorithm presented in the talk, which is purely a combinatorial
problem, could be possibly transformed into a branch-and-bound algorithm. This,
however, would require �nding a good lower bound on the value of the

∑
Cj criterion

or applying a good heuristic for construction of a near-optimal initial schedule.

References

[1] A. Agnetis, J-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multiagent
Scheduling: Models and Algorithms, Springer, Berlin-Heidelberg, 2014, doi: 10.

1007/978-3-642-41880-8.

[2] Z. L. Chen, Parallel machine scheduling with time dependent processing
times, Discrete Applied Mathematics, 70 (1996), 81–93, doi: 10.1016/

0166-218X(96)00102-3. (Erratum: Discrete Applied Mathematics, 75 (1997),
103, doi: 10.1016/S0166-218X(97)00002-4.)

[3] S. Eilon, I. G. Chowdhury, Minimizing waiting time variance in the single machine
problem, Management Science, 23 (1977), 567–573, doi: 10.1287/mnsc.23.

6.567.

[4] S. Gawiejnowicz, A review of four decades of time-dependent scheduling: main
results, new topics, and open problems, Journal of Scheduling, 23 (2020), 3–47,
doi: 10.1007/s10951-019-00630-w.

[5] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling,
Springer, Berlin-Heidelberg, 2020, doi: 10.1007/978-3-662-59362-2.

July 5th – 6th, 2021, Poznań, Poland 87

[6] S. Gawiejnowicz, W. Kurc, New results for an open time-dependent schedul-
ing problem, Journal of Scheduling, 23 (2020), 733–744, doi: 10.1007/

s10951-020-00662-7.

[7] A. Kononov, Scheduling problems with linear increasing processing times, U. Zim-
mermann et al. (eds.), Operations Research 1996, Springer, Berlin-Heidelberg, 1997,
208–212, doi: 10.1007/978-3-642-60744-8_38.

[8] V. A. Strusevich, K. Rustogi, Scheduling with Time-Changing E�ects
and Rate-Modifying Activities, Springer, Cham, 2017, doi: 10.1007/

978-3-319-39574-6.

[9] G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Operations Re-
search, 39 (1991), 979–991, doi: 10.1287/opre.39.6.979.

88 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Two-agent scheduling with position-dependent processing
times and job rejection

Xiaowen Song
Qufu Normal University, Qufu, P. R. China

Cuixia Miao∗
Qufu Normal University, Qufu, P. R. China

Xiaoxu Song
Qufu Normal University, Qufu, P. R. China

Keywords: agent scheduling, position-dependent jobs, single machine, parallel ma-
chines, job rejection, dynamic programming, FPTAS

1 Introduction

We consider two-agent scheduling problems with position-dependent processing times
and job rejection. The problems can be formulated as follows. There are two agents
A and B, each agent has a job family JX = {JX1 , JX2 , · · · , JXnX

}, X ∈ {A,B},
either to be processed onm ≥ 1 parallel machines or outsourced to a subcontractor
with a penalty. The actual processing time of each job JXj is de�ned pXjk = αXj f(k),
where f(k) is a function that only depends on the position k. If the function f(k)
is an increasing function with respect to k, we will deal with a position-dependent
deterioration e�ect, otherwise we deal with a position-dependent learning e�ect. We will
denote the e�ects by symbolsDE andLE, respectively. The objective is to minimize
the objective value of one agent with the restriction that the other agent objective value
cannot exceed a given upper bound.

2 Related research

The two-agent scheduling was �rst considered by Baker and Smith [3] and Agnetis et
al. [2]. Cheng et al. [5] and Gawiejnowicz [8] gave surveys of scheduling with time-
dependent processing times. Bachman and Janiak [4] gave a review for the position-
dependent scheduling problems on a single machine, and they summarized most of
the basic problems with di�erent objectives. Gawiejnowicz [7] and Strusevich and

∗Speaker, e-mail: miaocuixia@126.com

DOI: 10.14708/isbn.978-83-951298-6-5p89-92

89

Rustogi [12] considered more recent research on time- and position-dependent schedul-
ing. Agnetis et al. [1] discussed the agent scheduling in detail. Gawiejnowicz and
Suwalski [9] considered two-agent scheduling problems with linearly deteriorating jobs.
Feng et al. [6] and Li and Lu [10] considered two-agent scheduling with rejection on a
single machine and on two-parallel-machines. Yang and Lu [13] addressed two-agent
scheduling problems with the general position-dependent processing time.

3 Our results
In this paper, we consider two-agent scheduling problems with position-dependent
processing times and job rejection. We assume theDE holds and that the makespan of
accepted jobs plus the total rejection penalty of rejected jobs of agentB cannot exceed
a given upper boundQ. For the minimization of the makespan of accepted jobs plus
the total rejection penalty of rejected jobs of agentA, we design pseudo-polynomial
dynamic programming algorithms for the single-machine problem and the two-parallel-
machine problem, running in O(n2An

2
BP

2Q2E) and O(n3An
3
BP

4Q3E) time, re-
spectively, where P =

(∑nA
j=1 e

A
j +

∑nB
j=1 e

B
j

)
f(nA + nB), E =

∑nA
j=1 e

A
j and

f(nA + nB) is the maximal value of function f(k) for 1 ≤ k ≤ n. Applying the geo-
metric rounding technique and in�ated rejection penalty (Sengupta [11]), we develop a
O(

n3n4
An

4
B

ε7
log2E log2 P log3Q) fully polynomial time approximation scheme (an

FPTAS) for the parallel-machine problem. For the minimization of the total comple-
tion time of accepted jobs plus the total rejection penalty of rejected jobs of agentA, we
present for the single-machine problem a pseudo-polynomial dynamic programming
algorithm and an FPTAS running inO(n2An

2
BP1Q

2) andO(
n3n2

An
2
B

ε3
logP1 log

2Q)

time, respectively, where P1 =
(∑nA

j=1 e
A
j +

∑nB
j=1 e

B
j

)
f(1).

4 Future research
In future research, it would be worth to consider scheduling problems in uniform
and �ow shop machine environments. Analysis of other objectives such as the total
weighted completion time is another interesting topic for future research.

Acknowledgements
This research was supported by the National Natural Science Foundation of China
(11801310, 11771251), the Province Natural Science Foundation of Shandong (ZR2017-
MA031, ZR2019MA061), the Project of Shandong Province Graduate Supervisor Abil-
ity Promotion (SDYY17139).

90 The Third International Workshop on Dynamic Scheduling Problems

References

[1] A. Agnetis, J-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multiagent
Scheduling: Models andAlgorithms, Springer, Berlin-Heidelberg, 2014,doi: 10.

1007/978-3-642-41880-8.

[2] A. Agnetis, P. B. Mirchandani, D. Pacciarelli, A. Paci�ci, Scheduling problems
with two competing agents, Operations Research, 52 (2004), 229–242, doi: 10.

1287/opre.1030.0092.

[3] K. R.Baker, J. C. Smith, A multiple-criterion model for machine scheduling,
Journal of Scheduling, 6 (2003), 7–16, doi: 10.1023/A:1022231419049.

[4] A. Bachman, A. Janiak, Scheduling jobs with position-dependent processing
times, Journal of Operations Research Society, 55 (2004), 257–264, doi: 10.

1057/palgrave.jors.2601689.

[5] T. C. E. Cheng, Q. Ding, B. M. T. Lin, A concise survey of scheduling with
time-dependent processing times, European Journal of Operational Research,
152 (2004), 1–13, doi: 10.1016/S0377-2217(02)00909-8.

[6] Q. Feng, B-Q. Fan, S-S. Li, W-P. Shang, Two-agent scheduling with rejection
on a single machine, Applied andMathematical Modelling, 39 (2015), 1183–1193,
doi: 10.1016/j.apm.2014.07.024.

[7] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling,
Springer, Berlin-Heidelberg, 2020, doi: 10.1007/978-3-662-59362-2.

[8] S. Gawiejnowicz,Time-Dependent Scheduling, Springer, Berlin-Heidelberg, 2008,
doi: 10.1007/978-3-540-69446-5.

[9] S. Gawiejnowicz, C. Suwalski, Scheduling linearly deteriorating jobs by two agents
to minimize the weighted sum of two criteria, Computer and Operation Research,
52 (2014), 135–146, doi: 10.1016/j.cor.2014.06.020.

[10] D-W. Li, X-W. Lu, Two-agent parallel-machine scheduling with rejection, Theo-
retical Computer Science, 703 (2017), 66–75, doi: 10.1016/j.tcs.2017.09.

004.

[11] S. Sengupta, Algorithms and approximation schemes for minimum
lateness/tardiness scheduling with rejection, Lecture Notes in Computer
Science, 2748 (2003), 79–90, doi: 10.1007/978-3-540-45078-8_8.

July 5th – 6th, 2021, Poznań, Poland 91

[12] V. A. Strusevich, K. Rustogi, Scheduling with Times-Changing E�ects
and Rate-Modifying Activities, Springer, Cham, 2017, doi: 10.1007/

978-3-319-39574-6.

[13] L-Y. Yang, X-W. Lu, Two-agent scheduling problems with the general position-
dependent processing time, Theoretical Computer Science, 796 (2019), 90–98,
doi: 10.1016/j.tcs.2019.08.023.

92 The Third International Workshop on Dynamic Scheduling Problems

The Third International Workshop on Dynamic Scheduling Problems
AdamMickiewicz University, Poznań, July 5th – 6th, 2021

Scheduling with periodic availability constraints to
minimize makespan

Lishi Yu∗
School of Mathematical Science, Zhejiang University, P. R. China

Zhiyi Tan
School of Mathematical Science, Zhejiang University, P. R. China

Keywords: scheduling, worst-case ratio, periodic availability, LPT, FFD

1 Introduction
In the real environment, we often encounter the situation that the production of a
company is suspended, or the work is not carried out as planned due to various rea-
sons. Some of them are routine arrangements such as employees taking weekends off
andmachines being maintained regularly, while others may be caused by emergencies,
such as sudden breakdown of a machine and isolation measures taken to fight infec-
tious diseases. Therefore, it is significant to study the scheduling problems in which
the machine environment changes in time. Time intervals during which machines
cannot process jobs are usually called unavailability periods. Accordingly, we call the
remaining time intervals availability periods.

There are usually two assumptions on the unavailability periods of the machines.
One is that the start and end time of the unavailability periods have a certain regularity,
generally manifested as periodic. The second is that the unavailability periods appear
without any obvious regularity. This will bring some difficulties in design and analysis
of exact or approximation algorithms. Therefore, some restrictions on the unavailabil-
ity periods are usually added. For example, there is at most one unavailability period
on each machine, or the unavailability periods on different machines do not overlap,
which are often far away from reality. On the other hand, the periodic unavailability
periods is closer to the real situation.

In this paper, we study scheduling problems with periodic unavailability periods.
Given a set of n independent jobs J = {J1, . . . , Jn}, which are to be processed
on m ≥ 1 parallel identical machines M1,M2, . . . ,Mm. All the jobs are available
at time zero, and no preemption is allowed. The processing time of Jj is pj , where
j = 1, . . . , n. Each machine is periodically unavailable. In other words, available

∗Speaker, e-mail: 12035036@zju.edu.cn

DOI: 10.14708/isbn.978-83-951298-6-5p93-98

93

periods and unavailable periods appear alternately on each machine. The duration
of each unavailable period and available period is t and T , respectively. Denote by
β = t

T the ratio between the length of an unavailable period and available period. In
most real settings, β < 1. Without loss of generality, we assume that each machine
just finishes its maintenance at time 0 and pj ≤ T , for j = 1, 2, . . . , n. The objective
is to minimize the makespan. Following Ji et al. [5], the problem will be denoted in
the extended three-field notation as Pm|nr − pm|Cmax.

2 Related research
There are plenty of papers on scheduling with unavailability periods. We refer to
Lee [7] and Ma et al. [9] for the surveys on this topic. However, very few papers
dealt with periodic unavailability periods. For 1|nr − pm|Cmax, Ji et al. [5] pro-
posed an algorithm LPT , and showed that its worst-case ratio is 2. Moreover, there
is no polynomial time approximation algorithm with a worst-case ratio of less than
2 unless P = NP . For P2|nr − pm|Cmax, Sun and Li [12] introduced an algo-
rithm and proved that its worst-case ratio is at least max

{
14
11 + 12

11β, 2
}
and at most

max
{
8
5 + 6

5β, 2
}
. Results on corresponding problems with different objectives and

other variations can be found in Gawiejnowicz [2, 3], Lu and Li [8], Qi et al. [11],
Qi [10], Sun and Li [12], Xu et al. [13, 14, 15].

In the scheduling literature,LPT is usually referred to as a classical algorithm for
parallel machine scheduling. Algorithm Longest Processing Time first (LPT for short,
Graham [4]) first sorts the jobs in non-increasing order by processing times, then al-
ways assigns the first unprocessed job in the sequence to the machine which can com-
plete it as early as possible. Algorithm LPT is also applicable for single machine and
machines with unavailability periods, as shown by Ji et al. [5].

In fact, LPT for 1|nr − pm|Cmax is more intuitive to be interpreted using the
bin-packing terminology. Namely, in the one-dimensional bin packing problem, we
are given a sequence of jobs each associated with a size. Jobs are required to be packed
into a minimum number of bins with identical capacity. First Fit Decreasing (FFD
for short) is a fundamental algorithm for bin-packing problems (Johnson [6]). Algo-
rithm FFD first sorts the jobs in non-increasing order by size, then always packs the
next unpacked jobs in the sequence into the first opened bin that has enough room to
accommodate it. If no opened bin is suitable for this, a new bin is opened and the job
is packed there. For any instance of Pm|nr − pm|Cmax, we can construct a compan-
ion one-dimensional bin packing instance by setting the size of a job as its processing
time and the capacity of the bin as t. In fact, the essential idea of algorithm LPT by
Ji et al. [5] is first using FFD to pack jobs into bins and then processing jobs of each
bin as a whole in an available period.

94 The Third International Workshop on Dynamic Scheduling Problems

In the first glance, it seems that Ji et al. [5] complete the study on 1|nr−pm|Cmax.
However, both the tightness of LPT and the non-approximability only valid when
β tends to infinity, which falls into the relatively unrealistic situation. Adopting the
reduction given in [5], it is not difficult to see that there is no polynomial time approx-
imation algorithm with a worst-case ratio of less than 2β+2

β+2 unless P = NP , but
the performance of LPT when β is small remains unexplored. To learn more about
LPT , Yu et al. [16] presentedworst-case ratios ofLPT and algorithms based onother
bin-packing algorithms as functions of b∗, the minimum number of availability peri-
ods that at least one job is processed on in any schedule. However, the parameter b∗ is
instance-dependent and it isNP -hard to obtain its exact value.

3 Our results
For a companion bin-packing instance constructed by an instance of scheduling prob-
lems with periodic unavailability periods, denote by bFFD (b for short) and b∗BP the
number of bins created by FFD and in an optimal packing, respectively. Let Bi be
the ith bin created by the FFD algorithm, i = 1, . . . , b. By abuse of notation, we
also useBi to denote the set of jobs that are packed in it.

For an instance ofPm|nr−pm|Cmax, let b∗ be the number of availability periods
that at least one job is processed on in the optimal schedule. Clearly, b∗BP = b∗ when
m = 1. When m = 2, b∗BP ≤ b∗, and there exists instance such that the strict
inequality holds.

Lemma 1. (Dósa [1]) b ≤ 11
9 b

∗
BP + 6

9 .

Lemma 1 is a fundamental result on FFD. Though the bound is tight, and even
the additive term can not be improved, it is still inadequate to prove our result.

Let B = {B1, B2, . . . , Bb−1}, and BI , B1
II , B2

II , BIII be disjoint subsets of B.
Concretely,

(i) BI consists of bins of B which contains exactly one job.
(ii) B1

II consists of bins of B which contains exactly two jobs with one of them
has a size greater than T

2 .
(iii)B2

II consists of bins ofB which contains exactly two jobs with none of them
has a size greater than T

2 .
(iv) BIII consists of bins of B which contains exactly three jobs.
If pn > T

4 , then any bin can contain at most three jobs. Therefore, B = BI ∪
B1
II ∪ B2

II ∪ BIII .
Let y0 be the number of jobs packed to Bb. We have the following non-trivial

result on the FFD algorithm for the bin-packing.

July 5th – 6th, 2021, Poznań, Poland 95

Lemma 2. Suppose that b > b∗BP ≥ 2 and Jn is packed inBb with pn > T
4 .

(i) If b − b∗BP = 2k + 1, where k is an integer, then |B2
II | ≥ 6k + y0 and

|BIII | ≥ 8k + y0.
(ii) If b− b∗BP = 2k + 2, where k is an integer, then |B2

II | ≥ 6k + 3 + y0 and
|BIII | ≥ 8k + 4 + y0.

Note that given b and b∗BP , we can enumerate all possible triples (|B2
II |, |BIII |, y0)

by Lemma 2. For example, if b∗BP = 2 and b = 3, then the only possibility is (1, 1, 1).
It follows that n = 6. Similarly, if b∗BP = 3 and b = 4, then (1, 1, 1), (1, 2, 1),
(2, 1, 1) are all three possibilities.

Ourmain result for problem 1|nr−pm|Cmax is the following theorem (see Fig. 1a,
where from top to bottom are given bounds by Ji et al. [5], bounds given in this paper,
and the theoretic lower bound, respectively).

Theorem 3. Theworst-case ratio of algorithmLPT for problem 1|nr−pm|Cmax is no
more than

r(β) =

44+44β
33+36β , β ∈ (0,

√
313−15
32] ≈ (0, 0.0841],

29+28β
22+20β , β ∈ (

√
313−15
32 ,

√
181−11
24] ≈ (0.0841, 0.1022],

9+8β
7+4β , β ∈ (

√
181−11
24 ,∞) ≈ (0.1022,∞),

and the bound is tight when β ≥ 0.1022.

(a)Worst-case ratios of algorithmLPT and
theoretic lower bounds for problem

1|nr − pm|Cmax

(b)Worst-case ratios of algorithms and
theoretic lower bounds for problem

P2|nr − pm|Cmax

Figure 1. Worst case ratios and theoretic lower bounds

For problem P2|nr − pm|Cmax, we first give a non-approximability result (see
Fig. 1b, where from top to bottom are given bounds by Sun and Li [12], bounds given
in this paper, and the theoretic lower bound, respectively).

96 The Third International Workshop on Dynamic Scheduling Problems

Theorem 4. For problemP2|nr− pm|Cmax, there is no polynomial time approxima-
tion algorithm with a worst-case ratio less than 1 + β unlessP = NP .

Next, we propose a new algorithmDFFD problem P2|nr − pm|Cmax, which
beats the algorithm proposed by Sun and Li [12].

AlgorithmDFFD

1. Apply algorithmFFD for the companion bin-packing instance. If b = 2k+1,
wherek is an integer, Go to Step 2. If b = 2k, wherek is an integer, Go to Step 3.

2. For i = 1, . . . , k, process jobs in B2i−1 on the ith availability period ofM1,
and process jobs inB2i on the ith availability period ofM2. Process the jobs in
Bb on two machines by algorithmLPT . Output the resulting schedule. Stop.

3. For i = 1, . . . , k, process the jobs in B2i−1 on the ith availability period of
M1, and process jobs in B2i on the ith availability period ofM2. Denote the
resulting schedule by σ1.

4. For i = 1, . . . , k − 1, process the jobs inB2i−1 on the ith availability period
ofM1, and process jobs inB2i on the ith availability period ofM2. Process the
jobs inBb−1 ∪Bb on two machines by algorithmLPT . Denote the resulting
schedule by σ2.

5. Select the better schedule of σ1 and σ2 as output. Stop.

Theorem 5. Theworst-case ratio of algorithmDFFD for problemP2|nr−pm|Cmax
is 10

7 + 8
7β, and the bound is tight.

4 Further research
Tighten the worst-case ratio of LPT for 1|nr − pm|Cmax when β ∈ [0, 0.0841)
is a tedious and hard work. Generalizing the algorithms and their analysis for two
machines case tommachines case is more interesting and also more challenging.

Acknowledgement. Supported by the National Natural Science Foundation of
China (12071427, 11671356).

References
[1] G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is FFD(I) ≤

11
9 OPT (I)+ 6

9 ,LectureNotes inComputer Science, 4614 (2007), 1–11, doi: 10.1007/
978-3-540-74450-4_1.

[2] S. Gawiejnowicz, A review of four decades of time-dependent scheduling: main re-
sults, new topics, and open problems, Journal of Scheduling, 23 (2020), 3–47, doi: 10.
1007/s10951-019-00630-w.

July 5th – 6th, 2021, Poznań, Poland 97

[3] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling, Springer,
Berlin-Heidelberg, 2020, doi: 10.1007/978-3-662-59362-2.

[4] R. L. Graham, Bounds onmultiprocessing timing anomalies, SIAM Journal on Applied
Mathematics, 17 (1969), 416–429, doi: 10.1137/0117039.

[5] M. Ji, Y. He, T-C. E. Cheng, Single-machine scheduling with periodic maintenance
to minimize makespan, Computers & Operations Research, 34 (2007), 1764–1770,
doi: 10.1016/j.cor.2005.05.034.

[6] D. S. Johnson,Near-Optimal Bin Packing Algorithms, Ph. D. thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 1973.

[7] C-Y. Lee, Machine scheduling with an availability constraint, J. Y-T. Le-
ung (ed.), Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, Chappman & Hall/CRC, Boca Raton-London-New York, 2004,
doi: 10.1201/9780203489802.

[8] G. Li, X. Lu, Two-machine schedulingwith periodic availability constraints tominimize
makespan, Journal of Industrial and Management Optimization, 11 (2015), 685–700,
doi: 10.3934/jimo.2015.11.685.

[9] Y. Ma, C-B. Chu, C-R. Zuo, A survey of scheduling with deterministic machine avail-
ability constraints, Computers & Industrial Engineering, 58 (2010), 199–211, doi: 10.
1016/j.cie.2009.04.014.

[10] X. Qi, A note on worst-case performance of heuristics for maintenance scheduling
problems,Discrete AppliedMathematics, 155 (2007), 416–422, doi: 10.1016/j.dam.
2006.06.005.

[11] X. Qi, T. Chen, F. Tu, Scheduling the maintenance on a single machine, Journal of the
Operational Research Society, 50 (1999), 1071–1078, doi: 10.1057/palgrave.jors.
2600791.

[12] K. Sun, H. Li, Scheduling problems with multiple maintenance activities and non-
preemptive jobs on two identical parallel machines, International Journal of Production
Economics, 124 (2010), 151–158, doi: /10.1016/j.ijpe.2009.10.018.

[13] D. Xu, Z. Cheng, Y. Yin, H. Li, Makespan minimization for two parallel machines
scheduling with a periodic availability constraint, Computers & Operations Research,
36 (2009), 1809–1812, doi: 10.1016/j.cor.2008.05.001.

[14] D. Xu, Y. Yin, H. Li, A note on ’scheduling of nonresumable jobs and flexible mainte-
nance activities on a single machine to minimize makespan’, European Journal of Opera-
tional Research, 197 (2009), 825–827, doi: 10.1016/j.ejor.2008.07.021.

[15] D. Xu, K. Sun, H. Li, Parallel machine scheduling with almost periodic maintenance
and non-preemptive jobs to minimize makespan, Computers & Operations Research,
35 (2008), 1344–1349, doi: 10.1016/j.cor.2006.08.015.

[16] X. Yu, Y. Zhang, G. Steiner, Single-machine scheduling with periodic maintenance
to minimize makespan revisited, Journal of Scheduling, 17 (2014), 263–270, doi: 10.
1007/s10951-013-0350-0.

98 The Third International Workshop on Dynamic Scheduling Problems

Indexes

Index of authors

Berlińska, Joanna, 27

Farid, Karim, 57

Gawiejnowicz, Stanisław, 33, 83
Ghosh, Diptesh, 77

Hall, Nicholas G., 17
Hussein, Youssef, 57

Kolińska, Marta, 33

Liu, Zhixin, 17

Marchetti-Spaccamela, Alberto, 39
Megow, Nicole, 39
Miao, Cuixia, 89
Mor, Baruch, 27, 47, 71
Mosheiov, Gur, 47

Ostermeier, Frederik, 51

Sakr, Nourhan, 57
Schlöter, Jens, 39
Sedding, Helmut A., 63
Shabtay, Dvir, 71
Sharma, Prabha, 77
Singh, Sandeep, 77
Skowrońska, Weronika, 83
Skutella, Martin, 39
Song, Xiaowen, 89
Song, Xiaoxu, 89
Stougie, Leen, 39

Tan, Zhiyi, 93

Yedidsion, Liron, 71
Yu, Lishi, 93

101

Index of keywords

adjacent job sequence, 77
adjacent scenario, 77
assembly line, 63

bi-criteria optimization, 71

choice of opponent, 17
complexity, 39
conditional DAG, 39

data gathering networks, 27
deteriorating jobs, 83
discrete scenario, 77
dynamic programming, 89

FFD, 93
�ow shop, 51
forgetting e�ects, 51
FPTAS, 89

heuristics, 71

job rejection, 89
jobs

position-dependent, 89

LAPT rule, 33
learning e�ects, 51
line side placement, 63
local search, 77
LPT, 93

makespan, 39, 47
mixed-criticality scheduling, 57
moving conveyor, 63
multiple round sports tournament, 17

open shop, 33

parallel machines, 83, 89
parallel processing, 39
performance criteria, 17
periodic availability, 93
professional tennis data, 17

reinforcement learning, 57
relative robust optimization, 77
resource allocation, 71
resource-dependent processing times, 71

scheduling, 27, 47, 51, 71, 93
agent, 89
time-dependent, 33, 63, 83

single machine, 47, 89
step-learning, 47

total completion time, 83

V-shape property, 83
variable communication speed, 27
varying-speed processors, 57

walking time, 63
worst-case ratio, 93

103

