
Heuristic Algorithms for Solving Hard 
Scheduling Problems with Positional 

Penalties and Controllable Processing Times 

Dvir Shabtay

Baruch Mor

Liron Yedidsion



Today’s Agenda

 Problem Definition

 Known Results from the Literature

 Objectives

 Heuristic Algorithms

 Experimental Study

 Directions for Future Research



Problem Definition

 We are given a set of n jobs, J={1,…,n}, that is available

at time zero and is to be non-preemptively scheduled

on a single-machine.

 The processing time of job j, denoted by pj(uj), is a

convex decreasing function of the amount of

continuous and non-renewable resource, uj, allocated

to its processing operation.



Problem Definition
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Parameters:

௝ - a lower bound on the processing time of job j.

௝ - the workload of job j.

k – parameter common to all jobs.

Decision Variables:

௝ - the amount of resource allocated to job j.



Definition of a Solution
 A solution S to our problem is defined by

 A job processing permutation:

 A resource allocation strategy:

 Both combinatorial and continuous decisions



Quality of a Solution
 Scheduling Criterion:
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௜ - a positive integer representing the per unit of processing time 

penalty for assigning any job to the i-th position in .

 Resource Allocation Cost

- the cost of one unit of resource allocated to the processing 

of job j.



F1 stands for



Variants of the Problem
P1: Find a solution S =( ,u) which minimizes:

+ 

 P2: Find a solution S =( ,u) which minimizes

subject to:

= 

- bound on the total resource allocation cost



Complexity Results from the 
Literature

Problem ௜ Complexity Reference

P1 ௜=1 for i=1,…,n O(n) Shabtay and Steiner 
(2007)

P1 Various special cases 
n,…,1for j=0 =jBwhere 

O(nlogn) Lee and Lei (2001), 
Shabtay and Kaspi
(2004), Yin et al., 
(2016), Wang and 

Wang (2017)

P1 arbitrary )3nO( Yedidsion and 
Shabtay (2017)

P2 NP-hard For any ௜

parameters 
satisfying the 

condition that 
௟ ௠ for any lm

Yedidsion and 
Shabtay (2017)



Relevant Results from the Literature
 Given , P2 reduces to the following convex programming 

problem: 

Min c(u)= ഝ ೔

ഝ ೔

subject to     



Relevant Results from the Literature
 Using KKT, Yedidsion and Shabtay (2017) showed that the 

optimal resource allocation strategy as a function of is: 

(1) 

 By inserting (1) into the objective value, they obtain that 

the minimum scheduling cost for a given is given by: 



Relevant Results from the Literature

(2) 

Where

(3)

(4)

and for j=1,…,n



Relevant Results from the Literature
 Therefore, they conclude that P2 reduces to a sequencing 

problem of finding minimizing (2).

 Unfortunately, Yedidsion and Shabtay (2017) proved that 

this problem is NP-hard for any parameters satisfying 

the condition that  for any lm.



Gaps

 The only method exists in the literature for solving P2 is 
the approximation algorithm by Yedidsion and Shabtay
(2017). 

 However, this algorithm wasn’t tested against any other 
algorithm or against the value of a tight lower bound. 

 Our aim is to help closing this gap in the literature.



Heuristic Algorithms
 H1: A simple Sorting Algorithm (O(nlogn)).Sorting Algorithm

 H2: Heuristic which is based on the Agent Insertion Method 

(as the one used by Nawza et al. (1983)) (O(n3) time). 

 H3: The approximation algorithm of Yedidsion and Shabtay

(2017). It is based on solving a series of P1 problems (O(n3+p) 

time, where np is the number of P1 problems solved). H3 

Algorithm



Heuristic Algorithms
H4: A Simulated Annealing (SA) algorithm.

H5: Genetic Algorithm (GA). 

H6: Selects the best permutation out of 50, 000 randomly 

generated permutations.

We also used the solution obtained by H3 to construct 

a lower bound (LB) on the objective value. 



Experimental Study 
 Algorithms Hi for i = 1, 2, 3, 4, 5 were implemented in C++ 

and run on an Intel(R) Core ™ i7-8650U CPU @ 1.90 GHz 

16.0 GB RAM platform. 

 The programming platform consisted of the ’Visual 

Studio’ software.



Experimental Study 
 For each out of several combinations of k and n, we 

randomly generated a set of 50 numerical instances.

 For each instance, we draw the parameters (wj, vj and Bj) 

from a discrete uniform distribution ranging between 1 

and 20.

We draw the value of Uv from a discrete uniform 

distribution ranging between and 

.



Experimental Study 
 For each set of problems, we compute:

 The average relative gap ( ) of the value of the solution 

obtained by heuristic Hi (i=1,…,6) from the lower bound 

value.

 The maximal relative gap (max ) of the value of the 

solution obtained by heuristic Hi (i=1,…,6) from the lower 

bound value.

 The average running time (r.t) of each heuristic (sec) except 

from H1 and H6, in which the running time was negligible.



Results - total completion time objective ( =n-i+1):

n k H1 H2 H3 (p=1)

avg  max  avg  max  r.t avg  max  r.t

50 0.5 1.9287 3.6936 1.4568 2.8736 0.002 0 0 1.399

50 0.75 2.6438 20.345 2.2923 20.125 0.002 0.6248 17.105 1.373

50 1 1.4230 3.6101 1.2919 3.5772 0.002 0.0993 3.3115 1.268

100 0.5 2.4580 14.758 2.1808 14.364 0.015 0.4772 12.595 50.01

100 0.75 2.2495 19.725 2.0427 19.358 0.015 0.3513 17.564 37.84

100 1 1.6648 14.914 1.5836 14.855 0.015 0.5082 12.971 43.79

150 0.5 2.5458 23.634 2.3552 23.383 0.050 0.4232 21.158 378.8

150 0.75 3.4535 38.305 3.2280 37.886 0.051 1.4935 33.744 419.0

150 1 2.2054 27.374 2.1256 27.332 0.050 0.9784 25.385 375.6



Results - total completion time objective ( =n-i+1):

n k H4 H5 H6

avg  max  r.t avg  max  r.t avg  max 
50 0.5 0.0333 0.4291 0.124 0.4297 2.0360 0.153 9.2411 11.718

50 1 0.6689 17.151 0.132 0.8655 17.368 0.364 11.041 30.824

50 2 0.1478 3.3614 0.132 0.3186 3.6101 0.360 11.026 14.103

100 0.5 0.4974 12.597 0.236 1.0846 13.325 0.436 14.490 29.217

100 1 0.3656 17.564 0.236 0.8793 18.451 0.912 15.536 35.284

100 2 0.5201 12.983 0.236 0.9671 13.461 0.904 17.207 29.487

150 0.5 0.4348 21.231 0.348 1.2101 22.199 0.841 16.019 42.168

150 1 1.5039 33.762 0.348 2.2095 34.675 1.704 19.271 57.314

150 2 0.9891 25.386 0.349 1.5491 26.164 1.681 20.150 46.103



Conclusions 
 The PV1-based heuristic (H3) outperforms all other heuristics. 

It provides a solution that has an average gap of less than 0.44% 

relative to the lower bound value. This result provides strong 

evidence for (i) the high quality of the PV1-based heuristic and 

(ii) the tightness of our lower bound, which seems to match the 

optimal value in most cases. 

 The main disadvantage of the PV1- based heuristic (H3) is its 

running time, which may become an obstacle when trying to 

solve instances of over 200 jobs. 



Conclusions 
 The two meta-heuristics possess the advantage of a short 

running time combined with a high quality solution. It 

seems that for large instances, SA outperforms GA, as the 

former is able to provide better solutions in a shorter 

computation time. 



Conclusions 
 The strongest evidence for the effectiveness of our heuristics emerges 

when we compare them to H6, which selects the best out of 50,000 

randomly generated permutations. For example, 

 the average percent relative deviation between H6 and the lower bound 

value over all instances is 14.9%, while it is 0.46% for SA and 0.95% for 

GA, both of which also generate about 50,000 permutations during the 

search process. 

 Even H1 and H2, each of which constructs a single solution, yield an 

average percent relative deviation that is much smaller than that of H6 

(it is 2.16% and 1.94% for H1 and H2, respectively, compared to 14.9% for 

H6).



Additional Results and Future Research 

We design two exact algorithms.

 Based on a branch and bound procedure

 Based on Integer Convex Programming formulation.

 In future research, we aim to extend the experimental 

study to include this two algorithms.



Any questions?



Sorting Algorithm

ଵ
∗

Order the jobs in a non-increasing order of ௝

W.L.O.G we assume that ଵ ଶ ௡

ଶ
∗

Order the jobs in a non-increasing order of ௝

ଵ ௩
ି௞

ଶ ଶ
∗

ଵ ଵ ௩
ି௞

ଵ ଵ
∗

ଶ ଶ ௩
ି௞

ଶ ଶ
∗



H1 Algorithm

Order the jobs in a non-increasing order of 
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Heuristic Algorithms
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H3 Algorithm
P1(): Find a solution S =( ,u) which minimizes:
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 P1() is equivalent to P1 and therefore is solvable in O(n3) time.

For =0, the optimal solution is to set The solution is 

feasible to P2 but obviously not optimal.

 For =1, the optimal solution is to set  The solution is 

not feasible to P2.



H3 Algorithm

 Starting from  we solve a series of P1

problems such that

 the optimal solution for P1( ) is feasible (but not necessarily

optimal) for P2, and

 the optimal solution for P1() is not feasible for P2

We do so as follow:



H3 Algorithm
 Compute  .

 If the optimal solution for P1( ) is feasible for P2, update

Otherwise, update



If at some point the optimal permutation for P1( ) is identical

for P1(), this permutation is optimal.

Heuristic Algorithms



H3 Algorithm
 Yedidsion and Shabtay (2017) proved that P1() has an

approximation ratio of

where

Heuristic Algorithms


