

Heuristic Algorithms for Solving Hard Scheduling Problems with Positional Penalties and Controllable Processing Times

Dvir Shabtay

Baruch Mor

Liron Yedidsion

Today's Agenda

- Problem Definition
- Known Results from the Literature
- Objectives
- Heuristic Algorithms
- Experimental Study
- Directions for Future Research

Problem Definition

- We are given a set of n jobs, J={1,...,n}, that is available at time zero and is to be non-preemptively scheduled on a single-machine.
- The processing time of job *j*, denoted by $p_j(u_j)$, is a convex decreasing function of the amount of continuous and non-renewable resource, u_j , allocated to its processing operation.

Problem Definition

$$p_j(u_j) = B_j + \left(\frac{w_j}{u_j}\right)^k$$

Parameters:

- B_j a lower bound on the processing time of job j.
- w_j the workload of job j.
- k parameter common to all jobs.

Decision Variables:

 u_j - the amount of resource allocated to job j.

Definition of a Solution

- □ A solution *S* to our problem is defined by
 - A job processing permutation:

 $\phi = (\phi(1), \phi(2), \dots, \phi(n))$

• A resource allocation strategy:

$$\boldsymbol{u} = (u_1, u_2, \dots, u_n)$$

Both combinatorial and continuous decisions

Quality of a Solution

Scheduling Criterion:

 $F_1(S) = \sum_{i=1}^n \xi_i \, p_{\phi(i)}(u_{\phi(i)})$

 ξ_i - a positive integer representing the per unit of processing time penalty for assigning any job to the *i*-th position in ϕ .

Resource Allocation Cost

$$F_2(S) = \sum_{j=1}^n v_j \, u_j$$

 v_j - the cost of one unit of resource allocated to the processing of job *j*.

Table 1

A subset of single-machine scheduling problems in which the scheduling criterion can be represented as a special case of (5).

Scheduling Criterion	Positional Penalties (ξ_i)				
C _{max}	1				
$\sum_{j=1}^{n} C_j$	n + i - 1				
$\sum_{s=1}^n \sum_{t=s}^n C_s - C_t $	• $(i-1)(n-i+1)$				
$\sum_{s=1}^n \sum_{t=s}^n W_s - W_t $	i(n-i)				
$\alpha \sum_{j=1}^{n} E_{j} + \beta \sum_{j=1}^{n} T_{j} + \gamma \sum_{j=1}^{n} d_{j}^{(1)}$	$lpha(i-1)+\gamma n ext{for} i \leqslant i^* \ eta(n-i+1) ext{for} i > i^*$				
$lpha \sum_{j=1}^{n} E_{j} + eta \sum_{j=1}^{n} T_{j} + \gamma \sum_{j=1}^{n} d_{j}^{(2)}$	$lpha i + \gamma (n+1) ext{for} i \leqslant i^* - 1 \ eta (n-i) + \gamma ext{for} i \geqslant i^*$				
$\alpha \sum_{j=1}^{n} E_{j} + \beta \sum_{j=1}^{n} T_{j} + \gamma \sum_{j=1}^{n} d_{j}^{(3)}$	$(n-i+1)\min\{eta,\gamma\}$				
$\alpha \sum_{i=1}^{n} E_{j} + \beta \sum_{i=1}^{n} T_{j} + \gamma_{1} n \underline{d} + \gamma_{2} n D^{(4)}$	$\alpha(i-1) + n\gamma_1$ for $i \leq i_1^*$				
	$\beta(n-i+1) \text{for} i > i_2^*$				

⁽¹⁾ d_j = d for j = 1, ..., n and d is a decision variable. i^{*} can be computed in constant time.

(2) d_j = p_j +slack for j = 1, ..., n and slack is a decision variable. i^{*} can be computed in constant time.

⁽³⁾ Each job can be assigned a due date with no restrictions.

⁽⁴⁾ The scheduler can assign a common due window $\left[\underline{d}, \overline{d} = \underline{d} + D\right]$ where *D* is a constant,

for the completion time of each job. i_1^* and i_2^* can be computed in constant time.

Variants of the Problem P1: Find a solution $S = (\phi, \mathbf{u})$ which minimizes: $F_1(S) + F_2(S) = \sum_{i=1}^n \xi_i p_{\phi(i)}(u_{\phi(i)}) + \sum_{j=1}^n v_j u_j$ P2: Find a solution $S = (\phi, \mathbf{u})$ which minimizes $F_1(S) = \sum_{i=1}^n \xi_i p_{\phi(i)}(u_{\phi(i)})$

subject to:

$$F_2(S) = \sum_{j=1}^n v_j \, u_j \, \leq U_v$$

 U_v - bound on the total resource allocation cost

Complexity Results from the

Literature

Problem	ξ_i	Complexity	Reference
P1	ξ_i =1 for i=1,,n	O(n)	Shabtay and Steiner (2007)
P1	Various special cases where $B_{j}=0$ for $j=1,,n$	O(nlogn)	Lee and Lei (2001), Shabtay and Kaspi (2004), Yin <i>et al.</i> , (2016), Wang and Wang (2017)
P1	arbitrary	O(<i>n</i> ³)	Yedidsion and Shabtay (2017)
Р2	NP-hard	For any ξ_i parameters satisfying the condition that $\xi_l \neq \xi_m$ for any $l \neq m$	Yedidsion and Shabtay (2017)

Relevant Results from the Literature

Given ϕ , P2 reduces to the following convex programming problem:

Min c(**u**)=
$$\sum_{i=1}^{n} \xi_i p_{\phi(i)}(u_{\phi(i)}) = \sum_{i=1}^{n} \xi_i \left(B_{\phi(i)} + \left(\frac{w_{\phi(i)}}{u_{\phi(i)}} \right)^k \right)$$

subject to $\sum_{i=1}^{n} v_{\phi(i)} u_{\phi(i)} \leq U_{v}$

Relevant Results from the Literature
 Using KKT, Yedidsion and Shabtay (2017) showed that the optimal resource allocation strategy as a function of φ is:

$$u_{\phi(i)}^{*} = \frac{(\xi_{i})^{\frac{1}{k+1}} (w_{\phi(i)})^{\frac{k}{k+1}}}{(v_{\phi(i)})^{\frac{1}{k+1}} \sum_{i=1}^{n} (\xi_{i})^{\frac{1}{k+1}} \eta_{\phi(i)}} U_{v} \text{ for } i = 1, \dots, n.$$
(1)

□ By inserting (1) into the objective value, they obtain that the minimum scheduling cost for a given ϕ is given by:

Relevant Results from the Literature

$$c(\phi, \mathbf{u}^{*}(\phi)) = c_{1}(\phi) + (U_{\nu})^{-k} (c_{2}(\phi))^{k+1}, \qquad (2)$$

(3)

(4)

Where

 $c_{1}(\phi) = \sum_{i=1}^{n} \xi_{i} B_{\phi(i)}$ and $c_{2}(\phi) = \sum_{i=1}^{n} (\xi_{i})^{\frac{1}{k+1}} \eta_{\phi(i)}.$ and $\eta_{j} = (w_{j} v_{j})^{k/(k+1)}$ for j=1,...,n Relevant Results from the Literature

□ Therefore, they conclude that P₂ reduces to a sequencing problem of finding ϕ minimizing (2).

□ Unfortunately, Yedidsion and Shabtay (2017) proved that this problem is NP-hard for any ξ_i parameters satisfying the condition that $\xi_l \neq \xi_m$ for any $l \neq m$.

Gaps

- The only method exists in the literature for solving P2 is the approximation algorithm by Yedidsion and Shabtay (2017).
- However, this algorithm wasn't tested against any other algorithm or against the value of a tight lower bound.
- Our aim is to help closing this gap in the literature.

Heuristic Algorithms

- □ H1: A simple Sorting Algorithm (O(*n*log*n*)). Sorting Algorithm
- □ H2: Heuristic which is based on the Agent Insertion Method (as the one used by Nawza *et al.* (1983)) (O(n³) time).
- □ H3: The approximation algorithm of Yedidsion and Shabtay (2017). It is based on solving a series of P1 problems (O(n^{3+p}) time, where n^p is the number of P1 problems solved). H3
 Algorithm

Heuristic Algorithms

- **H4**: A Simulated Annealing (SA) algorithm.
- **H5**: Genetic Algorithm (GA).
- □ H6: Selects the best permutation out of 50, 000 randomly generated permutations.

■We also used the solution obtained by H₃ to construct a lower bound (LB) on the objective value.

Experimental Study

Algorithms H_i for i = 1, 2, 3, 4, 5 were implemented in C++ and run on an Intel(R) Core [™] i7-8650U CPU @ 1.90 GHz 16.0 GB RAM platform.

The programming platform consisted of the 'Visual Studio' software.

Experimental Study

- □ For each out of several combinations of *k* and *n*, we randomly generated a set of 50 numerical instances.
- □ For each instance, we draw the parameters $(w_j, v_j \text{ and } B_j)$ from a discrete uniform distribution ranging between 1 and 20.
- We draw the value of U_v from a discrete uniform distribution ranging between $0.5n10^{2-1/k}$ and $1.5n10^{2-1/k}$.

Experimental Study

□ For each set of problems, we compute:

- The average relative gap (*avgδⁱ*) of the value of the solution obtained by heuristic H*i* (*i*=1,...,6) from the lower bound value.
- The maximal relative gap (maxδⁱ) of the value of the solution obtained by heuristic Hi (i=1,...,6) from the lower bound value.
- □ The average running time (*r*.*t*) of each heuristic (sec) except from **H1** and **H6**, in which the running time was negligible.

Results - total completion time objective ($\xi_i = n - i + 1$):

n	k	H	lı 👘		H2		H3 (p=1)		
		avg δ	max δ	avg δ	max δ	r.t	avg δ	max δ	r.t
50	0.5	1.9287	3.6936	1.4568	2.8736	0.002	0	0	1.399
50	0.75	2.6438	20.345	2.2923	20.125	0.002	0.6248	17.105	1.373
50	1	1.4230	3.6101	1.2919	3.5772	0.002	0.0993	3.3115	1.268
100	0.5	2.4580	14.758	2.1808	14.364	0.015	0.4772	12.595	50.01
100	0.75	2.2495	19.725	2.0427	19.358	0.015	0.3513	17.564	37.84
100	1	1.6648	14.914	1.5836	14.855	0.015	0.5082	12.971	43.79
150	0.5	2.5458	23.634	2.3552	23.383	0.050	0.4232	21.158	378.8
150	0.75	3.4535	38.305	3.2280	37.886	0.051	1.4935	33.744	419.0
150	1	2.2054	27.374	2.1256	27.332	0.050	0.9784	25.385	375.6

Results - total completion time objective ($\xi_i = n - i + 1$):

n	k	H4			H5			Н6	
		avg δ	max δ	r.t	avg δ	max δ	r.t	avg δ	max δ
50	0.5	0.0333	0.4291	0.124	0.4297	2.0360	0.153	9.2411	11.718
50	1	0.6689	17.151	0.132	0.8655	17.368	0.364	11.041	30.824
50	2	0.1478	3.3614	0.132	0.3186	3.6101	0.360	11.026	14.103
100	0.5	0.4974	12.597	0.236	1.0846	13.325	0.436	14.490	29.217
100	1	0.3656	17.564	0.236	0.8793	18.451	0.912	15.536	35.284
100	2	0.5201	12.983	0.236	0.9671	13.461	0.904	17.207	29.487
150	0.5	0.4348	21.231	0.348	1.2101	22.199	0.841	16.019	42.168
150	1	1.5039	33.762	0.348	2.2095	34.675	1.704	19.271	57.314
150	2	0.9891	25.386	0.349	1.5491	26.164	1.681	20.150	46.103

Conclusions

- The PV1-based heuristic (H3) outperforms all other heuristics. It provides a solution that has an average gap of less than 0.44% relative to the lower bound value. This result provides strong evidence for (i) the high quality of the PV1-based heuristic and (ii) the tightness of our lower bound, which seems to match the optimal value in most cases.
- The main disadvantage of the PV1- based heuristic (H3) is its running time, which may become an obstacle when trying to solve instances of over 200 jobs.

Conclusions

The two meta-heuristics possess the advantage of a short running time combined with a high quality solution. It seems that for large instances, SA outperforms GA, as the former is able to provide better solutions in a shorter computation time.

Conclusions

- The strongest evidence for the effectiveness of our heuristics emerges when we compare them to H6, which selects the best out of 50,000 randomly generated permutations. For example,
 - the average percent relative deviation between H6 and the lower bound value over all instances is 14.9%, while it is 0.46% for SA and 0.95% for GA, both of which also generate about 50,000 permutations during the search process.
 - Even H1 and H2, each of which constructs a single solution, yield an average percent relative deviation that is much smaller than that of H6 (it is 2.16% and 1.94% for H1 and H2, respectively, compared to 14.9% for H6).

Additional Results and Future Research

- U We design two exact algorithms.
 - Based on a branch and bound procedure
 - □ Based on Integer Convex Programming formulation.
- In future research, we aim to extend the experimental study to include this two algorithms.

$c(\phi, \mathbf{u}^{*}(\phi)) = c_{1}(\phi) + (U_{\nu})^{-k} (c_{2}(\phi))^{k+1},$

Sorting Algorithm

W.L.O.G we assume that $\xi_1 \leq \xi_2 \leq \cdots \leq \xi_n$

$$c_1(\phi)=\sum_{i=1}^n \xi_i B_{\phi(i)}$$
 — ϕ_1^*

Order the jobs in a non-increasing order of B_j

and

$$c_2(\phi) = \sum_{i=1}^n (\xi_i)^{rac{1}{k+1}} \eta_{\phi(i)}.$$

Order the jobs in a non-increasing order of η_i

 $LB = c_1(\phi_1^*) + (U_{\nu})^{-k} c_2(\phi_2^*)$ $UB_1 = c_1(\phi_1^*) + (U_{\nu})^{-k} c_1(\phi_1^*)$ $UB_2 = c_2(\phi_2^*) + (U_{\nu})^{-k} c_2(\phi_2^*)$

Order the jobs in a non-increasing order of

 $\alpha B_j + (1-\alpha)\eta_j$

$$\alpha = \frac{c_1(\phi_1^*)}{c_1(\phi_1^*) + (U_v)^{-k} c_2(\phi_2^*)}$$

Heuristic Algorithms

- \Box P1(α): Find a solution *S* =(ϕ ,**u**) which minimizes:
 - $\alpha F_1(S) + (1 \alpha)F_2(S) = \alpha \sum_{i=1}^n \xi_i \, p_{\phi(i)}(u_{\phi(i)}) + (1 \alpha) \sum_{j=1}^n v_j \, u_j$
- \Box P1(α) is equivalent to P1 and therefore is solvable in O(n³) time.
- □ For α =0, the optimal solution is to set $u_j = 0$. The solution is feasible to P₂ but obviously not optimal.
- □ For α =1, the optimal solution is to set $u_j \rightarrow \infty$. The solution is not feasible to P2.

- □ Starting from $[\underline{\alpha}, \overline{\alpha}] = [0,1]$, we solve a series of P1 problems such that
 - □ the optimal solution for $P_1(\underline{\alpha})$ is feasible (but not necessarily optimal) for P₂, and
 - **\Box** the optimal solution for $P_1(\overline{\alpha})$ is not feasible for P_2
- Ue do so as follow:

Compute $\alpha = (\underline{\alpha} + \overline{\alpha})/2$.

 \Box If the optimal solution for P1(α) is feasible for P2, update

 $\underline{\alpha} = \alpha$

Otherwise, update

 $\overline{\alpha} = \alpha$

If at some point the optimal permutation for $P_1(\underline{\alpha})$ is identical for $P_1(\overline{\alpha})$, this permutation is optimal.

Heuristic Algorithms

Sequence Yedidsion and Shabtay (2017) proved that $P_1(\alpha)$ has an approximation ratio of

$$\rho(k) = 1 + \frac{k}{(k+1)^{\frac{k+1}{k}} - k} + \varepsilon = f(k) + \varepsilon,$$

where

$$p \ge \max\{\lceil g \rceil, 2g + 2 - \log_2((1 + \varepsilon/f(k))^{\frac{k+1}{k}} - 1)\},\$$

Heuristic Algorithms