WDSP =

POZNAN 2021 ol

Heuristic Algorithms for Solving Hard
Scheduling Problems with Positional
Penalties and Controllable Processing Times

. Q
Dvir Shabtay Ben-Gurion University
of the Negev
‘
ARieL \.
Baruch Mor UNIVERSITY

Liron Yedidsion aon Iw D S P

POZNAN 2021 il

Today’s Agenda

Problem Definition

Known Results from the Literature
Objectives

Heuristic Algorithms

Experimental Study

Directions for Future Research

Problem Definition

We are given a set of n jobs, J={1,...,n}, that is available
at time zero and is to be non-preemptively scheduled

on a single-machine.

The processing time of job j, denoted by p{(u)), is a
convex decreasing function of the amount of
continuous and non-renewable resource, uj, allocated
to 1ts processing operation.

Parameters:

B; - a lower bound on the processing time of job j.

w; - the workload of job j.
k — parameter common to all jobs.

Decision Variables:

u; - the amount of resource allocated to job j.

—_— v » —

Definition of a Solution

A solution S to our problem is defined by

* A job processing permutation:

¢ = (¢(1),$(2), ..., p(n))

e A resource allocation strategy:

U= (uy, Uy, ..., Uy)

Both combinatorial and continuous decisions

— = _7/_7_:,,/7

Quality of a Solution

Scheduling Criterion:

F1(S) = Xiz1&i Py (Upi))
¢; - a positive integer representing the per unit of processing time

penalty for assigning any job to the i-th position in ¢.
Resource Allocation Cost
F5(S) = ?=1vj U;
v; - the cost of one unit of resource allocated to the processing

of jobj.

Table 1

A subset of single-machine scheduling problems in which the scheduling crite-
rion can be represented as a special case of (5).

Scheduling Criterion Positional Penalties (&,)
Conax 1
5 n+i-1
=
> 3G -G (i-1)(n—i+1)
s=1 =3 L
S YW - Wil i(n — 1)
s=1e=3
£ 3 P a(i—1)+ym for i<i
B AT v Bln—i+1) for i>i
& - o ai+yn+1) for i<i —1
a;}=::E’+ﬂ£“nn+’§:d’ pin—i)+y for i
aS B+ AT, +r§:@"’ (n— i+ 1)min{p.r}
1 =1 1
"f:%+ﬂf313+r;rd+rzub“’ a(i—1) +ny, for i<i;
o o ny; for i, <i<iy

pn—i+1) for i>iy
U d; =dforj=1,....n and d is a decision variable. i" can be computed in constant
time.

2) d; = py +slack for j = 1.n and slack is a decision variable. i’ can be computed in
constant time.

‘3! Each job can be assigned a due date with no restrictions.
‘) The scheduler can assign a common due window [d.c_i=¢ +D] where Dis a
constant,
for the completion time of each job. i; and i, can be computed in constant time.

— = _7/_7_:,,/7

Variants of the Problem

P1: Find a solution S =(¢,u) which minimizes:
Fi(S) + F(S) = XiLi & Poi) Upd)+ 2?:1 Vj U;
P2: Find a solution S =(¢,u) which minimizes
Fi(S) =21 & pom(Uem)
subject to:
F,(8)=Xj-1vjw < U,

U, - bound on the total resource allocation cost

7~ Complexity

Literature

(3;“,

roen L comiein

¢i=1fori=1,...,n O(n)

P1 Various special cases O(nlogn)
where B=o0 for j=1,...,n

P1 arbitrary O(n3)
P2 NP-hard For any ¢;
parameters
satisfying the

condition that
&1#2&y for any l=m

Shabtay and Steiner

(2007)

Lee and Lei (2001),
Shabtay and Kaspi
(2004), Yin et al.,

(2016), Wang and
Wang (2017)

Yedidsion and
Shabtay (2017)

Yedidsion and
Shabtay (2017)

Relevant Results from the Literature

Given ¢, P2 reduces to the following convex programming

problem:

Min c(u)= X1 & poy (Upw) = Zii i (B(p(l.) - (¢<o))

Ugp (i)

subjectto YL V) Up) < Uy

Relevant Results from the Literature
Using KKT, Yedidsion and Shabtay (2017) showed that the

optimal resource allocation strategy as a function of ¢ is:

)) Z:‘I—-l (5i)m’7(/)(i) (1)

By inserting (1) into the objective value, they obtain that

the minimum scheduling cost for a given ¢ is given by:

. Relevant Results from the Literature

c(p,u’(¢)) = c1(¢) + (U) *(ea(dp))", (2)
Where

o (@) =g¢.-s¢(,-, 3)

and

cx#) = 2 6P, @

and T]] = (ijj)k/(k+1) fOI’j=1 n

Relevant Results from the Literature

Therefore, they conclude that P2 reduces to a sequencing

problem of finding ¢ minimizing (2).

Unfortunately, Yedidsion and Shabtay (2017) proved that
this problem is NP-hard for any ¢; parameters satistying

the condition that &;#¢,, for any lzm.

> \wp//_ ; : e

Gaps

The only method exists in the literature for solving P2 is
the approximation algorithm by Yedidsion and Shabtay

(2017).

However, this algorithm wasn'’t tested against any other
algorithm or against the value of a tight lower bound.

Our aim is to help closing this gap in the literature.

Heuristic Algorithms
Hi: A simple Sorting Algorithm (O(nlogn)).
H2: Heuristic which is based on the Agent Insertion Method

(as the one used by Nawza et al. (1983)) (O(n3) time).

H3: The approximation algorithm of Yedidsion and Shabtay
(2017). It is based on solving a series of P1 problems (O(n3+)

time, where n? is the number of P1 problems solved).

Heuristic Algorithms
H4: A Simulated Annealing (SA) algorithm.
Hs: Genetic Algorithm (GA).

H6: Selects the best permutation out of 50, ooo randomly

generated permutations.

We also used the solution obtained by H3 to construct

a lower bound (LB) on the objective value.

:,—/V

Experimen“EaI | Study
Algorithms H. fori =1, 2, 3, 4, 5 were implemented in C++
and run on an Intel(R) Core ™ i7-8650U CPU @ 1.90 GHz
16.0 GB RAM platform.

The programming platform consisted of the "Visual

Studio’ software.

,—"/2{

- -//' :

Experimental Study
For each out of several combinations of k and n, we

randomly generated a set of 50 numerical instances.

For each instance, we draw the parameters (wj, v;and Bj)
from a discrete uniform distribution ranging between 1

and 2o0.

We draw the value of U, from a discrete uniform

distribution ranging between 0.5n10%71/% and

1.5n10%2-1/k,

— // 5

~ Experimental Study |

For each set of problems, we compute:

0 The average relative gap (avgés?) of the value of the solution
obtained by heuristic Hi (i=1,...,6) from the lower bound

value.

0 The maximal relative gap (maxé!) of the value of the
solution obtained by heuristic Hi (i=1,...,6) from the lower

bound value.

O The average running time (r.t) of each heuristic (sec) except

from H1 and H6, in which the running time was negligible.

—

ﬂ_—

50
50
50
100
100
100
150
150

150

0.5
0.75
1
0.5
0.75

0.5
0.75

avg o
1.9287
2.6438
1.4230
2.4580
2.2495
1.6648
2.5458

3-4535
2.2054

max o
3.6936
20.345
3.6101
14.758
19.725
14.914
23.634
38.305
27.374

avg o
1.4568
2.2023
1.2919
2.1808
2.0427
1.5836
2.3552
3.2280
2.1256

max o
2.8736
20.125
3-5772
14.364
19.358
14.855
23.383
37.886
27.332

rt
0.002
0.002
0.002
0.015
0.015
0.015
0.050
0.051

0.050

avg 6 maxo

O

0.6248

0.0993
0.4772
0.3513
0.5082
0.4232
1.4935
0.9784

0
17.105
3.3115
12.595
17.564
12.971
21.158
33.744
25.385

r.t

1.399

1.373
1.268

50.01
37-84
43.79
378.8
419.0
375.6

—

i=n-i+1):

avg 6 max 5 r.t avg 6 max 5 avg o max o
50 0.5 0.0333 0.4291 0.124 0.4297 2.0360 0.153 9.2411 11.718
50 1 0.6689 17151 0432 0.8655 17.368 0.364 11.041 30.824
50 2 0.1478 3.3614 0132 0.3186 3.6101 0.360 11.026 14.103
100 0.5 0.4974 12.597 0.236 1.0846 13.325 0.436 14.490 20.217
100 1 0.3656 17.564 0.236 0.8793 18.451 0.912 15.536 35.284
100 2 0.5201 12.983 0.236 0.9671 13.461 0.904 17.207 20.487
150 0.5 0.4348 21.231 0.348 12101 22.199 0.841 16.019 42.168
150 1 1.5039 33.762 0.348 2.2095 34.675 1.704 19.271 57.314
150 2 0.9801 25386 0349 15491 26164 1.681 20.150 46.103

Conclusions

The PVi-based heuristic (H3) outperforms all other heuristics.

[t provides a solution that has an average gap of less than 0.44%
relative to the lower bound value. This result provides strong
evidence for (i) the high quality of the PVi-based heuristic and
(ii) the tightness of our lower bound, which seems to match the

optimal value in most cases.

The main disadvantage of the PVi- based heuristic (H3) is its
running time, which may become an obstacle when trying to

solve instances of over 200 jobs.

,—"/2{

Conclusions

The two meta-heuristics possess the advantage of a short
running time combined with a high quality solution. It
seems that for large instances, SA outperforms GA, as the
former is able to provide better solutions in a shorter

computation time.

Conclusions

The strongest evidence for the effectiveness of our heuristics emerges

when we compare them to H6, which selects the best out of 50,000

randomly generated permutations. For example,

0 the average percent relative deviation between H6 and the lower bound
value over all instances is 14.9%, while it is 0.46% for SA and 0.95% for
GA, both of which also generate about 50,000 permutations during the

search process.

0 Even Hi and H2, each of which constructs a single solution, yield an
average percent relative deviation that is much smaller than that of H6
(it is 2.16% and 1.94% for H1 and H2, respectively, compared to 14.9% for
H6).

B

— —

~Additional Results and Future Research

We design two exact algorithms.
3 Based on a branch and bound procedure
3 Based on Integer Convex Programming formulation.

In future research, we aim to extend the experimental

study to include this two algorithms.

Any questions?

Se(gu(9) =)+ (U) M ealp)) T, B /

Sorting Algorithm

W.L.O.G we assume that {; < &, < - < &,

b1

C| ((f)) = Z EiByi) > Order the jobs in a non-increasing order of B;
i=1
and
n " ('b;
c2(p) = Z (&)™ 40)- — Order the jobs in a non-increasing order of 7

LB = Cl(qu +(Uv)_k c2(¢2)
UB; = ¢1(¢7) +(U,) ™" 1 (¢7)

UB; = c,(¢p3) +(Uyp) ™" c,(¢3)

—

H1 Algorithm

Order the jobs in a non-increasing order of

aBj + (1 — o),

S C1(¢I)
c1(¢7) + (U)7F c3(¢3)

H3 Algorithm

P1(o): Find a solution S =(¢,u) which minimizes:
aFi(S) + (1 — a)Fz(S) = a Xi; & Peiy(Up)) +(1 — o) Xiq v y;
P1(a) is equivalent to P1 and therefore is solvable in O(n3) time.

For a.=0, the optimal solution is to set u; = 0. The solution is

feasible to P2 but obviously not optimal.

For a.=1, the optimal solution is to set u;—o0. The solution is

not feasible to P2.

—————

H3 Algorithm

Starting from [g, &] = [0,1], we solve a series of Pi1

problems such that

3 the optimal solution for Pi(a) is feasible (but not necessarily

optimal) for P2, and

3 the optimal solution for P1(a) is not feasible for P2

We do so as follow:

——

H3 Algorithm

Compute a = (a + a)/2.

0 If the optimal solution for P1(a) is feasible for P2, update

|
I

0

Otherwise, update

Ql
|l

0

If at some point the optimal permutation for P1(a) is identical

for P1(a), this permutation is optimal.

H3 Algorithm
Yedidsion and Shabtay (2017) proved that Pi(a) has an

approximation ratio of

pk)=1+ +& = f(k) + &,

k41

(k+1) % —k

where

p > max{[g].2g+2 — log,(1+&/f(k)) F — 1)},

