
Heuristic Algorithms for Solving Hard
Scheduling Problems with Positional

Penalties and Controllable Processing Times

Dvir Shabtay

Baruch Mor

Liron Yedidsion

Today’s Agenda

 Problem Definition

 Known Results from the Literature

 Objectives

 Heuristic Algorithms

 Experimental Study

 Directions for Future Research

Problem Definition

 We are given a set of n jobs, J={1,…,n}, that is available

at time zero and is to be non-preemptively scheduled

on a single-machine.

 The processing time of job j, denoted by pj(uj), is a

convex decreasing function of the amount of

continuous and non-renewable resource, uj, allocated

to its processing operation.

Problem Definition

௝ ௝ ௝
௝

௝

௞

Parameters:

௝ - a lower bound on the processing time of job j.

௝ - the workload of job j.

k – parameter common to all jobs.

Decision Variables:

௝ - the amount of resource allocated to job j.

Definition of a Solution
 A solution S to our problem is defined by

 A job processing permutation:

 A resource allocation strategy:

 Both combinatorial and continuous decisions

Quality of a Solution
 Scheduling Criterion:

ଵ ௜
௡
௜ୀଵ థ ௜ థ ௜

௜ - a positive integer representing the per unit of processing time

penalty for assigning any job to the i-th position in .

 Resource Allocation Cost

- the cost of one unit of resource allocated to the processing

of job j.

F1 stands for

Variants of the Problem
P1: Find a solution S =(,u) which minimizes:

+

 P2: Find a solution S =(,u) which minimizes

subject to:

=

- bound on the total resource allocation cost

Complexity Results from the
Literature

Problem ௜ Complexity Reference

P1 ௜=1 for i=1,…,n O(n) Shabtay and Steiner
(2007)

P1 Various special cases
n,…,1for j=0 =jBwhere

O(nlogn) Lee and Lei (2001),
Shabtay and Kaspi
(2004), Yin et al.,
(2016), Wang and

Wang (2017)

P1 arbitrary)3nO(Yedidsion and
Shabtay (2017)

P2 NP-hard For any ௜

parameters
satisfying the

condition that
௟ ௠ for any lm

Yedidsion and
Shabtay (2017)

Relevant Results from the Literature
 Given , P2 reduces to the following convex programming

problem:

Min c(u)= ഝ ೔

ഝ ೔

subject to

Relevant Results from the Literature
 Using KKT, Yedidsion and Shabtay (2017) showed that the

optimal resource allocation strategy as a function of is:

(1)

 By inserting (1) into the objective value, they obtain that

the minimum scheduling cost for a given is given by:

Relevant Results from the Literature

(2)

Where

(3)

(4)

and for j=1,…,n

Relevant Results from the Literature
 Therefore, they conclude that P2 reduces to a sequencing

problem of finding minimizing (2).

 Unfortunately, Yedidsion and Shabtay (2017) proved that

this problem is NP-hard for any parameters satisfying

the condition that  for any lm.

Gaps

 The only method exists in the literature for solving P2 is
the approximation algorithm by Yedidsion and Shabtay
(2017).

 However, this algorithm wasn’t tested against any other
algorithm or against the value of a tight lower bound.

 Our aim is to help closing this gap in the literature.

Heuristic Algorithms
 H1: A simple Sorting Algorithm (O(nlogn)).Sorting Algorithm

 H2: Heuristic which is based on the Agent Insertion Method

(as the one used by Nawza et al. (1983)) (O(n3) time).

 H3: The approximation algorithm of Yedidsion and Shabtay

(2017). It is based on solving a series of P1 problems (O(n3+p)

time, where np is the number of P1 problems solved). H3

Algorithm

Heuristic Algorithms
H4: A Simulated Annealing (SA) algorithm.

H5: Genetic Algorithm (GA).

H6: Selects the best permutation out of 50, 000 randomly

generated permutations.

We also used the solution obtained by H3 to construct

a lower bound (LB) on the objective value.

Experimental Study
 Algorithms Hi for i = 1, 2, 3, 4, 5 were implemented in C++

and run on an Intel(R) Core ™ i7-8650U CPU @ 1.90 GHz

16.0 GB RAM platform.

 The programming platform consisted of the ’Visual

Studio’ software.

Experimental Study
 For each out of several combinations of k and n, we

randomly generated a set of 50 numerical instances.

 For each instance, we draw the parameters (wj, vj and Bj)

from a discrete uniform distribution ranging between 1

and 20.

We draw the value of Uv from a discrete uniform

distribution ranging between and

.

Experimental Study
 For each set of problems, we compute:

 The average relative gap () of the value of the solution

obtained by heuristic Hi (i=1,…,6) from the lower bound

value.

 The maximal relative gap (max) of the value of the

solution obtained by heuristic Hi (i=1,…,6) from the lower

bound value.

 The average running time (r.t) of each heuristic (sec) except

from H1 and H6, in which the running time was negligible.

Results - total completion time objective (=n-i+1):

n k H1 H2 H3 (p=1)

avg  max  avg  max  r.t avg  max  r.t

50 0.5 1.9287 3.6936 1.4568 2.8736 0.002 0 0 1.399

50 0.75 2.6438 20.345 2.2923 20.125 0.002 0.6248 17.105 1.373

50 1 1.4230 3.6101 1.2919 3.5772 0.002 0.0993 3.3115 1.268

100 0.5 2.4580 14.758 2.1808 14.364 0.015 0.4772 12.595 50.01

100 0.75 2.2495 19.725 2.0427 19.358 0.015 0.3513 17.564 37.84

100 1 1.6648 14.914 1.5836 14.855 0.015 0.5082 12.971 43.79

150 0.5 2.5458 23.634 2.3552 23.383 0.050 0.4232 21.158 378.8

150 0.75 3.4535 38.305 3.2280 37.886 0.051 1.4935 33.744 419.0

150 1 2.2054 27.374 2.1256 27.332 0.050 0.9784 25.385 375.6

Results - total completion time objective (=n-i+1):

n k H4 H5 H6

avg  max  r.t avg  max  r.t avg  max 
50 0.5 0.0333 0.4291 0.124 0.4297 2.0360 0.153 9.2411 11.718

50 1 0.6689 17.151 0.132 0.8655 17.368 0.364 11.041 30.824

50 2 0.1478 3.3614 0.132 0.3186 3.6101 0.360 11.026 14.103

100 0.5 0.4974 12.597 0.236 1.0846 13.325 0.436 14.490 29.217

100 1 0.3656 17.564 0.236 0.8793 18.451 0.912 15.536 35.284

100 2 0.5201 12.983 0.236 0.9671 13.461 0.904 17.207 29.487

150 0.5 0.4348 21.231 0.348 1.2101 22.199 0.841 16.019 42.168

150 1 1.5039 33.762 0.348 2.2095 34.675 1.704 19.271 57.314

150 2 0.9891 25.386 0.349 1.5491 26.164 1.681 20.150 46.103

Conclusions
 The PV1-based heuristic (H3) outperforms all other heuristics.

It provides a solution that has an average gap of less than 0.44%

relative to the lower bound value. This result provides strong

evidence for (i) the high quality of the PV1-based heuristic and

(ii) the tightness of our lower bound, which seems to match the

optimal value in most cases.

 The main disadvantage of the PV1- based heuristic (H3) is its

running time, which may become an obstacle when trying to

solve instances of over 200 jobs.

Conclusions
 The two meta-heuristics possess the advantage of a short

running time combined with a high quality solution. It

seems that for large instances, SA outperforms GA, as the

former is able to provide better solutions in a shorter

computation time.

Conclusions
 The strongest evidence for the effectiveness of our heuristics emerges

when we compare them to H6, which selects the best out of 50,000

randomly generated permutations. For example,

 the average percent relative deviation between H6 and the lower bound

value over all instances is 14.9%, while it is 0.46% for SA and 0.95% for

GA, both of which also generate about 50,000 permutations during the

search process.

 Even H1 and H2, each of which constructs a single solution, yield an

average percent relative deviation that is much smaller than that of H6

(it is 2.16% and 1.94% for H1 and H2, respectively, compared to 14.9% for

H6).

Additional Results and Future Research

We design two exact algorithms.

 Based on a branch and bound procedure

 Based on Integer Convex Programming formulation.

 In future research, we aim to extend the experimental

study to include this two algorithms.

Any questions?

Sorting Algorithm

ଵ
∗

Order the jobs in a non-increasing order of ௝

W.L.O.G we assume that ଵ ଶ ௡

ଶ
∗

Order the jobs in a non-increasing order of ௝

ଵ ௩
ି௞

ଶ ଶ
∗

ଵ ଵ ௩
ି௞

ଵ ଵ
∗

ଶ ଶ ௩
ି௞

ଶ ଶ
∗

H1 Algorithm

Order the jobs in a non-increasing order of

 

Heuristic Algorithms

 ଵ

ଵ

H3 Algorithm
P1(): Find a solution S =(,u) which minimizes:

 ଵ  ଶ  ௜
௡
௜ୀଵ థ ௜ థ ௜  ௝

௡
௝ୀଵ ௝

 P1() is equivalent to P1 and therefore is solvable in O(n3) time.

For =0, the optimal solution is to set The solution is

feasible to P2 but obviously not optimal.

 For =1, the optimal solution is to set  The solution is

not feasible to P2.

H3 Algorithm

 Starting from  we solve a series of P1

problems such that

 the optimal solution for P1() is feasible (but not necessarily

optimal) for P2, and

 the optimal solution for P1() is not feasible for P2

We do so as follow:

H3 Algorithm
 Compute  .

 If the optimal solution for P1() is feasible for P2, update

Otherwise, update



If at some point the optimal permutation for P1() is identical

for P1(), this permutation is optimal.

Heuristic Algorithms

H3 Algorithm
 Yedidsion and Shabtay (2017) proved that P1() has an

approximation ratio of

where

Heuristic Algorithms

