
Heuristic Algorithms for Solving Hard
Scheduling Problems with Positional

Penalties and Controllable Processing Times

Dvir Shabtay

Baruch Mor

Liron Yedidsion

Today’s Agenda

 Problem Definition

 Known Results from the Literature

 Objectives

 Heuristic Algorithms

 Experimental Study

 Directions for Future Research

Problem Definition

 We are given a set of n jobs, J={1,…,n}, that is available

at time zero and is to be non-preemptively scheduled

on a single-machine.

 The processing time of job j, denoted by pj(uj), is a

convex decreasing function of the amount of

continuous and non-renewable resource, uj, allocated

to its processing operation.

Problem Definition

Parameters:

 - a lower bound on the processing time of job j.

 - the workload of job j.

k – parameter common to all jobs.

Decision Variables:

 - the amount of resource allocated to job j.

Definition of a Solution
 A solution S to our problem is defined by

 A job processing permutation:

 A resource allocation strategy:

 Both combinatorial and continuous decisions

Quality of a Solution
 Scheduling Criterion:

ଵ

ୀଵ థ థ

 - a positive integer representing the per unit of processing time

penalty for assigning any job to the i-th position in .

 Resource Allocation Cost

- the cost of one unit of resource allocated to the processing

of job j.

F1 stands for

Variants of the Problem
P1: Find a solution S =(,u) which minimizes:

+

 P2: Find a solution S =(,u) which minimizes

subject to:

=

- bound on the total resource allocation cost

Complexity Results from the
Literature

Problem Complexity Reference

P1 =1 for i=1,…,n O(n) Shabtay and Steiner
(2007)

P1 Various special cases
n,…,1for j=0 =jBwhere

O(nlogn) Lee and Lei (2001),
Shabtay and Kaspi
(2004), Yin et al.,
(2016), Wang and

Wang (2017)

P1 arbitrary)3nO(Yedidsion and
Shabtay (2017)

P2 NP-hard For any

parameters
satisfying the

condition that
 for any lm

Yedidsion and
Shabtay (2017)

Relevant Results from the Literature
 Given , P2 reduces to the following convex programming

problem:

Min c(u)= ഝ

ഝ

subject to

Relevant Results from the Literature
 Using KKT, Yedidsion and Shabtay (2017) showed that the

optimal resource allocation strategy as a function of is:

(1)

 By inserting (1) into the objective value, they obtain that

the minimum scheduling cost for a given is given by:

Relevant Results from the Literature

(2)

Where

(3)

(4)

and for j=1,…,n

Relevant Results from the Literature
 Therefore, they conclude that P2 reduces to a sequencing

problem of finding minimizing (2).

 Unfortunately, Yedidsion and Shabtay (2017) proved that

this problem is NP-hard for any parameters satisfying

the condition that for any lm.

Gaps

 The only method exists in the literature for solving P2 is
the approximation algorithm by Yedidsion and Shabtay
(2017).

 However, this algorithm wasn’t tested against any other
algorithm or against the value of a tight lower bound.

 Our aim is to help closing this gap in the literature.

Heuristic Algorithms
 H1: A simple Sorting Algorithm (O(nlogn)).Sorting Algorithm

 H2: Heuristic which is based on the Agent Insertion Method

(as the one used by Nawza et al. (1983)) (O(n3) time).

 H3: The approximation algorithm of Yedidsion and Shabtay

(2017). It is based on solving a series of P1 problems (O(n3+p)

time, where np is the number of P1 problems solved). H3

Algorithm

Heuristic Algorithms
H4: A Simulated Annealing (SA) algorithm.

H5: Genetic Algorithm (GA).

H6: Selects the best permutation out of 50, 000 randomly

generated permutations.

We also used the solution obtained by H3 to construct

a lower bound (LB) on the objective value.

Experimental Study
 Algorithms Hi for i = 1, 2, 3, 4, 5 were implemented in C++

and run on an Intel(R) Core ™ i7-8650U CPU @ 1.90 GHz

16.0 GB RAM platform.

 The programming platform consisted of the ’Visual

Studio’ software.

Experimental Study
 For each out of several combinations of k and n, we

randomly generated a set of 50 numerical instances.

 For each instance, we draw the parameters (wj, vj and Bj)

from a discrete uniform distribution ranging between 1

and 20.

We draw the value of Uv from a discrete uniform

distribution ranging between and

.

Experimental Study
 For each set of problems, we compute:

 The average relative gap () of the value of the solution

obtained by heuristic Hi (i=1,…,6) from the lower bound

value.

 The maximal relative gap (max) of the value of the

solution obtained by heuristic Hi (i=1,…,6) from the lower

bound value.

 The average running time (r.t) of each heuristic (sec) except

from H1 and H6, in which the running time was negligible.

Results - total completion time objective (=n-i+1):

n k H1 H2 H3 (p=1)

avg max avg max r.t avg max r.t

50 0.5 1.9287 3.6936 1.4568 2.8736 0.002 0 0 1.399

50 0.75 2.6438 20.345 2.2923 20.125 0.002 0.6248 17.105 1.373

50 1 1.4230 3.6101 1.2919 3.5772 0.002 0.0993 3.3115 1.268

100 0.5 2.4580 14.758 2.1808 14.364 0.015 0.4772 12.595 50.01

100 0.75 2.2495 19.725 2.0427 19.358 0.015 0.3513 17.564 37.84

100 1 1.6648 14.914 1.5836 14.855 0.015 0.5082 12.971 43.79

150 0.5 2.5458 23.634 2.3552 23.383 0.050 0.4232 21.158 378.8

150 0.75 3.4535 38.305 3.2280 37.886 0.051 1.4935 33.744 419.0

150 1 2.2054 27.374 2.1256 27.332 0.050 0.9784 25.385 375.6

Results - total completion time objective (=n-i+1):

n k H4 H5 H6

avg max r.t avg max r.t avg max
50 0.5 0.0333 0.4291 0.124 0.4297 2.0360 0.153 9.2411 11.718

50 1 0.6689 17.151 0.132 0.8655 17.368 0.364 11.041 30.824

50 2 0.1478 3.3614 0.132 0.3186 3.6101 0.360 11.026 14.103

100 0.5 0.4974 12.597 0.236 1.0846 13.325 0.436 14.490 29.217

100 1 0.3656 17.564 0.236 0.8793 18.451 0.912 15.536 35.284

100 2 0.5201 12.983 0.236 0.9671 13.461 0.904 17.207 29.487

150 0.5 0.4348 21.231 0.348 1.2101 22.199 0.841 16.019 42.168

150 1 1.5039 33.762 0.348 2.2095 34.675 1.704 19.271 57.314

150 2 0.9891 25.386 0.349 1.5491 26.164 1.681 20.150 46.103

Conclusions
 The PV1-based heuristic (H3) outperforms all other heuristics.

It provides a solution that has an average gap of less than 0.44%

relative to the lower bound value. This result provides strong

evidence for (i) the high quality of the PV1-based heuristic and

(ii) the tightness of our lower bound, which seems to match the

optimal value in most cases.

 The main disadvantage of the PV1- based heuristic (H3) is its

running time, which may become an obstacle when trying to

solve instances of over 200 jobs.

Conclusions
 The two meta-heuristics possess the advantage of a short

running time combined with a high quality solution. It

seems that for large instances, SA outperforms GA, as the

former is able to provide better solutions in a shorter

computation time.

Conclusions
 The strongest evidence for the effectiveness of our heuristics emerges

when we compare them to H6, which selects the best out of 50,000

randomly generated permutations. For example,

 the average percent relative deviation between H6 and the lower bound

value over all instances is 14.9%, while it is 0.46% for SA and 0.95% for

GA, both of which also generate about 50,000 permutations during the

search process.

 Even H1 and H2, each of which constructs a single solution, yield an

average percent relative deviation that is much smaller than that of H6

(it is 2.16% and 1.94% for H1 and H2, respectively, compared to 14.9% for

H6).

Additional Results and Future Research

We design two exact algorithms.

 Based on a branch and bound procedure

 Based on Integer Convex Programming formulation.

 In future research, we aim to extend the experimental

study to include this two algorithms.

Any questions?

Sorting Algorithm

ଵ
∗

Order the jobs in a non-increasing order of

W.L.O.G we assume that ଵ ଶ

ଶ
∗

Order the jobs in a non-increasing order of

ଵ ௩
ି

ଶ ଶ
∗

ଵ ଵ ௩
ି

ଵ ଵ
∗

ଶ ଶ ௩
ି

ଶ ଶ
∗

H1 Algorithm

Order the jobs in a non-increasing order of

Heuristic Algorithms

 ଵ

ଵ

H3 Algorithm
P1(): Find a solution S =(,u) which minimizes:

 ଵ ଶ

ୀଵ థ థ

ୀଵ

 P1() is equivalent to P1 and therefore is solvable in O(n3) time.

For =0, the optimal solution is to set The solution is

feasible to P2 but obviously not optimal.

 For =1, the optimal solution is to set The solution is

not feasible to P2.

H3 Algorithm

 Starting from we solve a series of P1

problems such that

 the optimal solution for P1() is feasible (but not necessarily

optimal) for P2, and

 the optimal solution for P1() is not feasible for P2

We do so as follow:

H3 Algorithm
 Compute .

 If the optimal solution for P1() is feasible for P2, update

Otherwise, update

If at some point the optimal permutation for P1() is identical

for P1(), this permutation is optimal.

Heuristic Algorithms

H3 Algorithm
 Yedidsion and Shabtay (2017) proved that P1() has an

approximation ratio of

where

Heuristic Algorithms

