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Scheduling with periodic availability constraints to minimize makespan

Introduction

T t T t T t T

An illustration of periodic unavailability periods. Here, T
denotes the length of each available period, t denotes the length of
each unavailable period.

T1 t1 T2 t2 T3 t3 T4

An illustration of random unavailability periods. Here, Ti
denotes the length of ith available period, ti denotes the length of
ith unavailable period.
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Scheduling with periodic availability constraints to minimize makespan

Introduction

• Given a set of n independent jobs J = {J1, . . . , Jn}, which are to
be processed on m ≥ 1 parallel identical machines
M1,M2, . . . ,Mm. The processing time of Jj is pj, j = 1, . . . , n.

• All the jobs are available at time zero, and no preemption is
allowed. Each machine is periodically unavailable.

• The duration of each unavailable period and available period is t
and T, respectively. Denote by β = t

T the ratio between the length
of an unavailable period and available period. In most realities,
β < 1.
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Scheduling with periodic availability constraints to minimize makespan

Introduction

• Without loss of generality, we assume that each machine just
finishes its maintenance at time 0 and T ≥ p1 ≥ p2 ≥ ... ≥ pn.

• The objective is to minimize the makespan, which is the
maximum completion time among all machines.
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Scheduling with periodic availability constraints to minimize makespan

Introduction

Figure: An illustration of the problem under consideration, take the case
of m=1 as an example, where J[j] denotes the job placed in the jth
position of the given schedule.

By extending the three-field notation, the problem was denoted
as Pm|nr − pm|Cmax in Ji, He, and T. Cheng, 2007. Let CA be the
objective value of the algorithm solution and C∗ be the objective
value of the optimal solution, β = t

T .
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Scheduling with periodic availability constraints to minimize makespan

Related Work

There are plenty of research on scheduling with unavailability
periods. We refer to Lee, 2004 and Ma, Chu, and Zuo, 2010 for
the surveys on this topic.

• 1|nr − pm|Cmax: Ji, He, and T. Cheng, 2007 proposed an
algorithm LPT, and showed that its worst-case ratio is 2.
Moreover, there is no polynomial time approximation algorithm
with a worst-case ratio of less than 2 unless P = NP.

• P2|nr − pm|Cmax: Sun and H. Li, 2010 introduced an
algorithm and proved that its worst-case ratio is at least
max

{14
11 + 12

11β, 2
}

and at most max
{8

5 + 6
5β, 2

}
.
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Scheduling with periodic availability constraints to minimize makespan

Related Work

• Results on corresponding problems with different objectives and
other variations can be found in Qi, Chen, and Tu, 1999; Qi, 2007;
Xu, Z. Cheng, et al., 2009; Xu, Yin, and H. Li, 2009; Xu, Sun, and
H. Li, 2008; Sun and H. Li, 2010; G. Li and Lu, 2015;
Gawiejnowicz, 2020a; Gawiejnowicz, 2020b.
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Scheduling with periodic availability constraints to minimize makespan

Related Work

Algorithm Longest Processing Time first (LPT for short)
First sorts the jobs in non-increasing order by processing times,
then always assigns the first unprocessed job in the sequence to the
machine which can complete it as early as possible.
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Scheduling with periodic availability constraints to minimize makespan

Related Work

Why we study 1|nr − pm|Cmax?

• Ji, He, and T. Cheng, 2007: Both the tightness of LPT and the
non-approximability only valid when β tends to infinity, which falls
into the relatively unrealistic situation.

• Ji, He, and T. Cheng, 2007: The performance of LPT when β is
small remains unexplored.

• Yu, Zhang, and Steiner, 2014: presented worst-case ratios of
LPT algorithms based on other bin-packing algorithms as functions
of b∗, the minimum number of availability periods that at least one
job is processed on in any schedule. However, the parameter b∗ is
instance-dependent and it is NP-hard to obtain its exact value.
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Scheduling with periodic availability constraints to minimize makespan

Our Results(m=1)

Theorem 1
The worst-case ratio of the LPT for 1|nr − pm|Cmax is no more
than

r(β) =


44+44β
33+36β , β ∈ (0,

√
313−15

32 ] ≈ (0, 0.0841],
29+28β
22+20β , β ∈ (

√
313−15

32 ,
√

181−11
24 ] ≈ (0.0841, 0.1022],

9+8β
7+4β , β ∈ (

√
181−11

24 ,∞) ≈ (0.1022,∞),

and the bound is tight when β ≥ 0.1022.
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Our Results(m=2)

Theorem 2
The worst-case ratio of the DFFD for P2|nr − pm|Cmax is 10

7 + 8
7β,

and the bound is tight.

Theorem 3
For P2|nr − pm|Cmax, there is no polynomial time approximation
algorithm with a worst-case ratio of less than 1+ β unless P = NP.
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Scheduling with periodic availability constraints to minimize makespan

Our Results
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Figure: Left: Worst-case ratios of LPT and theoretic lower bounds for
1|nr − pm|Cmax. From top to bottom: bounds given in Ji, He, and
T. Cheng, 2007, bounds given in this paper, and the theoretic lower
bound.
Right: Worst-case ratios of algorithms and theoretic lower bounds for
P2|nr − pm|Cmax. From top to bottom: bounds given in Sun and H. Li,
2010, bounds given in this paper, and the theoretic lower bound.
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Scheduling with periodic availability constraints to minimize makespan

Lemma

For any instance of Pm|nr − pm|Cmax, we can construct a
companion one-dimensional bin packing instance by making the
following substitutions.

• Instance of scheduling problem ⇐⇒ Instance of bin-packing
problem

• Job ⇐⇒ Item

• Processing time of a job ⇐⇒ Size of an item

• Availability period ⇐⇒ Bin

• Length of each availability period ⇐⇒ Capacity of each bin
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Scheduling with periodic availability constraints to minimize makespan

Lemma

Bin-packing Problem
Given a set of n items with sizes p1, p2, · · · , pn, all items should be
packed into a number of bins and the sum of the sizes of items
being packed into each bin is at most T.

Algorithm First Fit Decreasing(FFD for short)
Reorder all items such that p1 ≥ p2 ≥ · · · ≥ pn, then packed each
item into the first bin it fits.
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Scheduling with periodic availability constraints to minimize makespan

Lemma

• bFFD (b for short) and b∗BP: the number of bins created by FFD
and in an optimal packing, respectively.

• Bi: the ith bin created by the FFD algorithm, i = 1, . . . , b / the
set of jobs that are packed in it.

• b∗: the number of availability periods that at least one job is
processed on in the optimal schedule.
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Lemma

Lemma 4

(Dósa, 2007) b ≤ 11
9 b∗BP + 6

9 and the bound is tight.
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Scheduling with periodic availability constraints to minimize makespan

Lemma

Let B = {B1,B2, . . . ,Bb−1}, and BI, B1
II, B2

II, BIII be disjoint
subsets of B. Concretely,
(i) BI consists of bins of B which contains exactly one item.
(ii) B1

II consists of bins of B which contains exactly two items with
one of them has a size greater than T

2 .
(iii)B2

II consists of bins of B which contains exactly two items with
none of them has a size greater than T

2 .
(iv) BIII consists of bins of B which contains exactly three items.
If pn > T

4 , then any bin can contain at most 3 items. Thus
B = BI ∪ B1

II ∪ B2
II ∪ BIII.

Let y0 be the number of items packed to Bb.
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Scheduling with periodic availability constraints to minimize makespan

Lamma

Lemma 5

Suppose that b > b∗BP ≥ 2 and Jn is packed in Bb with pn > T
4 .

(i) If b − b∗BP = 2k + 1, where k is an integer (b − b∗BP is an odd
number), then |B2

II| ≥ 6k + y0 and |BIII| ≥ 8k + y0.
(ii) If b − b∗BP = 2k + 2, where k is an integer(b − b∗BP is an even
number), then |B2

II| ≥ 6k + 3 + y0 and |BIII| ≥ 8k + 4 + y0.
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Scheduling with periodic availability constraints to minimize makespan

What dose lemma 5 mean

Let J∗ denote the smallest item in Bb, p∗ denote its size. For
any instance I, if J∗ is not the smallest item in J ,
we can obtain instance II by deleting items which are smaller than J∗.

C∗(I) ≥ C∗(II) when considering the corresponding scheduling instance

J∗
FFD(I)

FFD(II)

J∗
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Scheduling with periodic availability constraints to minimize makespan

What dose lemma 5 mean

|BI| = 0 |B1
II| = 0 |B2

II| = 1 |BIII| = 1 y0 = 1

FFD

OPT

An illustration of the case where b = 3 and b∗BP = 2.
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Scheduling with periodic availability constraints to minimize makespan

Why we need Lemma 5

To get a good enough lower bound for C∗ !!!

Let |Bi| denote the total processing time of jobs in Bi and P
denote the total processing time of J .

• p∗ ≤ T
4 : Then |Bi| > 3

4T for i=1,2,...b-1. Therefore,
P > (b − 1)3

4T + |Bb| and we can get an estimate of C∗ by this
argument.

• p∗ > T
4 : If we prove each bin have to contain at least three jobs

in the optimal solution, we would have a fairly satisfatory lower
bound. Hence, we consider the number of jobs of an instance
where b and b∗BP are fixed.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scheduling with periodic availability constraints to minimize makespan

Why we need Lemma 5

Clearly, with lemma 5, we can enumberate all possible triples
(|B2

II|, |BIII|, y0). Then we get the number of different kinds of jobs
and we can estimate C∗ by this imformation. For example, still
b = 3 and b∗BP = 2, and we know (|B2

II|, |BIII|, y0) = (1, 1, 1)
according to lemma 5. Therefore, there are at least three jobs in
each bin in optimal solution and C∗ > 3

4T.
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Scheduling with periodic availability constraints to minimize makespan

Proof Outline of Lemma 5

• JI = {Ji|pi > T − p∗, Ji ∈ J };

• J 1
II = {Ji|pi >

T
2 , Ji ∈ J };

• J 2
II denote a set consisting of items contained by bins in B2

II;

• JIII denote a set consisting of items contained by bins in BIII.
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Scheduling with periodic availability constraints to minimize makespan

Proof Outline of Lemma 5

In the optimal solution, it is easy to show that there are |BI| bins
contain items in JI and there are |B1

II| bins contain items in |J 1
II |.

Other bins can contain at most three items as pn > T
4 , which

implies that:

n = |BI|+2(|B1
II|+|B2

II|)+3|BIII|+y0 ≤ |BI|+2|B1
II|+3(b∗BP−|BI|−|B1

II|)
(1)

As b = |BI|+ |B1
II|+ |B2

II|+ |BIII|+ 1,

b − b∗BP ≤ 1 +
|B2

II| − y0
3 . (2)

Then we prove
|B2

II| ≥ 6k + y0/6k + 3 + y0
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Scheduling with periodic availability constraints to minimize makespan

Proof Outline of Lemma 5

• The total size of any two items in J2
II is greater than T − p∗.

• There is an optimal solution σ∗ satisfying: For any bin Bi in
BI ∪ B1

II, there is a bin B∗
i containing same items as Bi. Without

loss of generality, we consider σ∗ only.

• In order to packed items into less bins, some bins contain only
one item in J2

II as each bin contain at most two items if both of
them are in J2

II. (Otherwise, we need |B2
II| bins to contain J2

II, |BIII|
bins to contain JIII. Therefore, b = b∗.)

• By dicussing the number of bins containing only items in BIII, we
get the lower bound of |BIII|.
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

Since deleting jobs which are smaller than p∗ would not change
the value of CA, we only discuss instances where
p1 ≥ p2... ≥ pn = p∗.

C∗(I) ≥ C∗(II) when considering the corresponding scheduling instance

J∗
FFD(I)

FFD(II)

J∗
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

Let y denote the sum of processing time of jobs in the last batch
in the solution obtained by the LPT algorithm and x denote the
sum of processing time of jobs in the last batch in the solution
obtained by the optimal algorithm.

y

x

LPT

OPT
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

The upper bound of the worst-case ratio of Algorithm LPT:

r(β) =


44+44β
33+36β , β ∈ (0,

√
313−15

32 ] ≈ (0, 0.0841],
29+28β
22+20β , β ∈ (

√
313−15

32 ,
√

181−11
24 ] ≈ (0.0841, 0.1022],

9+8β
7+4β , β ∈ (

√
181−11

24 ,∞) ≈ (0.1022,∞),
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

The tightness when β ≥ 0.1022 can be proved by the following
instance. Let J = {J1, J2, J3, J4, J5, J6}, p1 = T

2 , p2 = p3 = T
4 + ϵ,

p4 = p5 = p6 = T
4 , ϵ > 0. Then, CA = 9

4T + 2t, C∗ = 7
4T + 2ϵ+ t.

J3 J4J5

T
4 + ϵ+ T

4 × 2

J2 J3J4J1

J1 J2

T
2 + T

4 + ϵ

J5J6

J6

(T
4 + ϵ)× 2 + T

4

CA = 9
4T + 2t

C∗ = 7
4T + 2ϵ+ t
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

Note that b∗BP = b∗ in this case. Here b∗ is the number of
availability periods that at least one job is processed on in the
optimal schedule.
• If b = b∗ ≥ 2,
y− x < y− (P− (b∗− 1)T) < y− (y+(b− 1)(T−p∗)− (b∗− 1)T)
= (b∗ − 1)p∗.

CA

C∗ =
(b∗ − 1)(T + t) + y
(b∗ − 1)(T + t) + x = 1 +

y − x
(b∗ − 1)(T + t) + x

< 1 +
(b∗ − 1)pn

(b∗ − 1)(T + t) + pn

By discussing the case of p∗ ≤ T
b∗ and p∗ > T

b∗ , we prove
CA
C∗ ≤ 4+2β

3+2β .
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

• If b > b∗:
• If p∗ ≤ T

4

CA

C∗ =
(b − 1)(T + t) + y
(b∗ − 1)(T + t) + x

<
(b − 1)(T + t) + y

(b∗ − 1)(T + t) + (b − 1)(T − pn)− (b∗ − 1)T + y

=
(b − 1)(T + t) + y

(b∗ − 1)t + (b − 1)(T − pn) + y .

(3)

Combining b ≤ ⌊11
9 b∗BP + 6

9⌋, we obtain that CA
C∗ ≤ g(b∗), where

g(b∗) =
(11

9 b∗ − 3
9)(T + t) + T

4
(b∗ − 1)t + (11

9 b∗ − 3
9)

3
4T + T

4
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Scheduling with periodic availability constraints to minimize makespan

1|nr − pm|Cmax

• If p∗ > T
4 :

• If b∗ ≥ 11 and b∗ ̸= 14, b < ⌊11
9 b∗ + 6

9⌋, otherwise
b ≥ |B2

II|+ |BIII|+ 1 > b according to lemma 5.

• If b∗ ≥ 11 and b < ⌊11
9 b∗ + 6

9⌋, then

CA

C∗ ≤
(⌊11

9 b∗ + 6
9⌋ − 2)(T + t) + y

(b∗ − 1)(T + t) + x <
((11

9 b∗ + 6
9)− 2)(T + t) + T

(b∗ − 1)(T + t) + T
4

≤ r(β)
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1|nr − pm|Cmax

• For the remaining cases, the main technique of this part is
enumberating all values of (|B2

II|, |BIII|, y0) according to lemma 5
and estimating CA and C∗, which is similar to the analysis we have
done for b∗ = 2, b = 3 before. Detailed description of this part of
the proof will take a lot of time, so it will not be explained here.
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P2|nr − pm|Cmax

Algorithm DFFD
1. Apply the FFD algorithm for the companion bin-packing
instance. If b = 2k + 1, where k is an integer, Go to Step 2. If
b = 2k, where k is an integer, Go to Step 3.
2. For i = 1, . . . , k, process the jobs in B2i−1 on the ith availability
period of M1, and processing jobs in B2i on the ith availability
period of M2. Process the jobs in Bb on two machines by LPT
algorithm. Output the resulting schedule. Stop.
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P2|nr − pm|Cmax

B1

B2

B2i−1

B2i

Bb−2

Bb−1

LPT Bb

LPT Bb

M1

M2

An illustration of the case of b ≡ 1 (mod 2), where Bi denotes the
set of jobs placed in the ith bin.
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P2|nr − pm|Cmax

Algorithm DFFD
3. For i = 1, . . . , k, process the jobs in B2i−1 on the ith availability
period of M1, and processing jobs in B2i on the ith availability
period of M2. Denote the resulting schedule by σ1.
4. For i = 1, . . . , k − 1, process the jobs in B2i−1 on the ith
availability period of M1, and processing jobs in B2i on the ith
availability period of M2. Process the jobs in Bb−1 ∪ Bb on two
machines by LPT algorithm. Denote the resulting schedule by σ2.
5. Select the better schedule of σ1 and σ2 as output. Stop.
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B1

B2

B2i−1

B2i

Bb−3

Bb−2

Bb−1

Bb

M1

M2

An illustration of the σ1, where b ≡ 2 (mod 2).

B1

B2

B2i−1

B2i

Bb−3

Bb−2

LPT

LPT

M1

M2

An illustration of the σ2, where b ≡ 2 (mod 2).
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P2|nr − pm|Cmax

It’s necessary to obtain both σ1 and σ2. Let’s consider the
instance with p1 = p2 = T

2 and p3 = ϵ.

T
2

T
2

ϵ

M1

M2

If we only consider σ1, CA
C∗ = T

T
2 +ϵ

→ 2.

T
2 ϵ

T
2

M1

M2

If we only consider σ2, CA = C∗
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P2|nr − pm|Cmax

There are also instances where σ1 is better than σ2

T
2

T
2

T
3

T
3

T
3

M1

M2

If we only consider σ1, CA = C∗.

T
2

T
3

T
2

T
3

T
3M1

M2

If we only consider σ2, CA
C∗ =

7
6 T+t

T
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P2|nr − pm|Cmax

The worst case ratio of DFFD is 10
7 + 8

7β. The tightness of it
can be proved by the following instance.

3
8T 3

8T

(T
4 + ϵ)× 3

T
4 + ϵ

CA = 5
4T + ϵ+ t

M1

M2

3
8T

(T
4 + ϵ)× 2

3
8T

(T
4 + ϵ)× 2

M1

M2

C∗ = 7
8T + 2ϵ
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P2|nr − pm|Cmax

In this model, b∗ may not equal to b∗BP. Besides, we redefine b∗
in order to establish a clearer connection between P and b∗.

1

1

· · ·

· · ·

k-1

k-1

M1

M2

b∗ = 2k − 1

1

1

· · ·

· · ·

k-1

k-1

M1

M2

b∗ = 2k
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P2|nr − pm|Cmax

Note that, even if b∗ have been redefined, it still may not equal
to b∗BP.

T

2
3T − 2ϵ

T
3

T
3

T
6 + ϵ

T
3

T
6 + ϵ

M1

M2

b∗ = 4

T
2
3T − 2ϵ

T/6 + ϵ
T/6 + ϵ

T
3

T
3

T
3

b∗BP = 3OPT
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Lemma 6
CA
C∗ ≤ (b+1)T+(b−1)t

(b∗−1)T+(b∗−2)t
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P2|nr − pm|Cmax

Combining lemma 6 and b ≤ ⌊11
9 b∗ + 6

9⌋, we prove if b∗ ≥ 13,
CA
C∗ ≤ 10

7 + 8
7β.

The proof of remaining cases is tedious, since we enumberate all
possible value of (b, b∗) and discuss each case respectively.
Therefore, we only show main techniques used in this part.
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P2|nr − pm|Cmax

Lemma 7

If items corresponding to J1, · · · , Jk are packed in two bins by the
FFD algorithm, p1 ≥ p2 · · · ≥ pk, k ≥ 3 and
P = p1 + · · ·+ pk ≤ 2T − p3, then J1, · · · , Jk are processed in one
batch on each machine if we apply the LPT algorithm.

Lemma 8

If b = 2k + 1 and the processing time of jobs in the last batch on
both machines is no more than p0, then
(i) if y0 ≤ 2, then CA ≤ kT + p0.
(ii) if y0 ≥ 3, then CA ≤ kT + T+p0

2 .
More generally, if jobs in J are processed on M1 and M2 by the
LPT algorithm and the processing time of the last finished job is
no more than p0. Then CA ≤ P+p0

2 if P ≤ 2T − p3.
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P2|nr − pm|Cmax

• If b ≡ 1 (mod 2) or b ≡ 0 (mod 2) and P is small enough, we
analyse σ2 and use lemma 8 to get the upper bound of CA.

• Otherwise, we analyse σ1 and take T as the upper bound of the
total processing time of jobs in the last available period.
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P2|nr − pm|Cmax

For estimation of C∗:

• We take P
2 or k∗T + T

2 as the lower bound of C∗.

• If technique above dose not work, we discuss the case of p∗ ≤ T
4

and the case of p∗ > T
4 .

• For the case of p∗ > T
4 , we deleting jobs which are smaller

than p∗ to get a new instance and use lemma 5 to get the lower
bound of C∗.

• For the case of p∗ ≤ T
4 , we obtain a lower bound of P and

then a lower bound of C∗.
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P2|nr − pm|Cmax

The last theorem is about the theoretic lower bound of
P2|nr − pm|Cmax.

Theorem 9
For P2|nr − pm|Cmax, there is no polynomial time approximation
algorithm with a worst-case ratio of less than 1+ β unless P = NP.

PARTITION: Given n positive integers h1, h2, · · · , hn with
n∑

i=1
hi = 2H, does there exist a set U ⊆ {1, 2, · · · , n}, with∑

i∈U
hi = H?

We prove that there is no polynomial time approximation
algorithm with a worst-case ratio of less than 1 + β by showing
that if not, then the algorithm can be used to establish a
polynomial time algorithm for solving the PARTITION problem,
which is NP-hard.
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Conclusion

In conclusion, we give an upper bound of the worst-case ratio of
the LPT algorithm with β as parameter to 1|nr− pm|Cmax. What’s
more, we propose a new algorithm, Algorithm DFFD, which beats
the existing algorithm to P2|nr − pm|Cmax. And we give the upper
bound of the worst case ratio of Algorithm DFFD which is tight.
Finally, we give a theoretic lower bound for P2|nr − pm|Cmax.
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Thank You!
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