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Minimizing completion times 

We have a set of 𝑛 jobs {1, 2, … , 𝑛}. 

The processing time of job 𝑗 is 𝑝𝑗. 

Given a sequence 𝜋 = (𝜋 1 , 𝜋(2), … , 𝜋(𝑛)) of 
jobs, the processing time for the sequence 
is  

𝐶 𝜋 =   𝑛 − 𝑖 + 1 𝑝𝜋(𝑖)
𝑛
𝑖=1 . 

Our objective is to find a sequence that 
minimizes 𝐶(𝜋). 

Result: 
The shortest processing time (SPT) rule generates an optimal sequence. 



Uncertainties 

• Yang and Yu suggest that uncertainties can happen due to many 
reasons: 
– Machine breakdown 
– Non-availability of quality tools 
– Unstable workforce 
– Changes in the working environment 
– Many other complex external factors 

• Probability distributions are used to model some of the 
uncertainties and expectations of the respective objective functions 
are optimized. 

• Processing times estimated based on statistical data.  
• Drawbacks of such estimations: 

– Variances can be large 
– The probability distributions assumed may be inaccurate 

 Yang, J., and G. Yu. “On the robust single machine scheduling problem.” Journal of Combinatorial 

Optimization 6.1 (2002): 17-33. 



Alternate approaches 

• All values in a finite interval [𝑎𝑖 , 𝑏𝑖] for each job 𝑖 may 
be taken as the valid processing times for each job. 

•  Most of the work in the literature has used interval 
data. 

• Kouvelis and Yu suggest a finite set of discrete values 
for each job. The processing time for the job will be 
chosen from among these values.  

 

 
Kouvelis, P., and G. Yu. Robust discrete optimization and its applications. Vol. 14. Springer 
Science & Business Media, 2013. 



Problem formulation 

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

• A scenario is obtained by assigning one of the 
possible processing times to each of the jobs. 

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6} 



Problem formulation 

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

• A scenario is obtained by assigning one of the 
possible processing times to each of the jobs. 
 

• The set of all scenarios is denoted by 𝑆 = {𝑠}, 
where 𝑠 is a scenario. 

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6  }  

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6} 



Problem formulation 

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

• A scenario is obtained by assigning one of the 
possible processing times to each of the jobs. 
 

• The set of all scenarios is denoted by 𝑆 = {𝑠}, 
where 𝑠 is a scenario. 
 

• A job sequence is denoted by a permutation 𝜋. 

E.g., 𝜋 = {3,1,4,2,5} meaning the job sequence is Job 3, 
then Job 1, then Job 4, then Job 2, and then Job 5. 

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6} 

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6  }  



Problem formulation 

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

• A scenario is obtained by assigning one of the 
possible processing times to each of the jobs. 
 

• The set of all scenarios is denoted by 𝑆 = {𝑠}, 
where 𝑠 is a scenario. 
 

• A job sequence is denoted by a permutation 𝜋. 

 
• The completion time for a job sequence 𝜋  in 

scenario 𝑠 is denoted as 𝐶(𝜋, 𝑠). 
E.g., if 𝜋 = 3,1,4,2,5  and 𝑠 = {4, 7, 14, 15, 6} then  
𝐶 𝜋, 𝑠 = 5 ⋅ 14 + 4 ⋅ 4 + 3 ⋅ 15 + 2 ⋅ 7 + 1 ⋅ 6 = 151. 

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6  }  

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6} 

E.g., 𝜋 = {3,1,4,2,5} meaning the job sequence is Job 3, then Job 
1, then Job 4, then Job 2, and then Job 5. 



Problem formulation 

• A scenario is obtained by assigning one of the 
possible processing times to each of the jobs. 

• The set of all scenarios is denoted by 𝑆 = {𝑠}, where 
𝑠 is a scenario. 

• A job sequence is denoted by a permutation 𝜋. 

• The completion time for a job sequence 𝜋  in 
scenario 𝑠 is denoted as 𝐶(𝜋, 𝑠). 



Problem formulation 

• The deviation for a job sequence 𝜋 in scenario 𝑠 is 
𝑑(𝜋, 𝑠) = 𝐶 𝜋, 𝑠 − 𝐶∗(𝑠). 

• The maximum deviation for a job sequence 𝜋 is 
max
s∈𝑆

 {𝑑 𝜋, 𝑠 }. 

• The scenario for which the 𝑑(𝜋, 𝑠) is a maximum 
is called a worst-case scenario for 𝜋. 

• The best (i.e., least) possible completion time for 
any job sequence in scenario 𝑠 is denoted as 𝐶∗(𝑠). 
The job sequence that has this completion time is 
obtained by the SPT rule. 



Problem formulation 

The relative robust total completion time problem 
with discrete data is that of finding a job  
sequence 𝜋  for which the maximum deviation is 
minimum. 

min
𝜋
max
𝑠∈𝑆

𝑑(𝜋, 𝑠) = min
𝜋
max
𝑠∈𝑆

(𝐶 𝜋, 𝑠 − 𝐶∗ 𝑠 ) 



About the problem 
• Yang and Yu say that this robust objective is to 

hedge against the worst-case scenario. 

• They say that discrete sets of processing times best 
capture the correlation among the processing 
times of different jobs. 

• Kouvelis and Yu show that the problem is NP-
complete even when 𝑆 = 2. 

• Yang and Yu have designed an exact dynamic 
programming algorithm and given two polynomial 
time heuristics.  

Yang, J., and G. Yu. “On the robust single machine scheduling problem.” Journal of Combinatorial 

Optimization 6.1 (2002): 17-33. 

Kouvelis, P., and G. Yu. Robust discrete optimization and its applications. Vol. 14. Springer Science & Business 
Media, 2013. 



A lemma 

Lemma 
For any job sequence 𝜋, its worst-case scenario will 
either have the processing times of each of the jobs 
at their maximum value or at their minimum value. 

Implication: 
If each job 𝑗 has 𝑘𝑗  possible processing time values, 

this lemma reduces the effective size of  
𝑆 from  𝑘𝑗

𝑛
𝑗=1  to 2𝑛. 



A local search algorithm 

Algorithm localSearch() { 
 𝜋 ← an initial job sequence generated based 
         on problem data; 
 𝜋𝑜𝑢𝑡 ← solution generated by a neighborhood 
     search procedure; 
 output 𝜋𝑜𝑢𝑡; 
} 



Generating the initial job 
sequence (𝜋) 
Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

Min = {5, 1, 2, 4, 3}  Max = {3, 4, 1, 2, 5} 
Job sequence {#, #, #, #, #} 

Min = {1, 2, 4, 3}  Max = {3, 4, 1, 2} 
Job sequence {5, #, #, #, #} 

Min = {1, 2, 4}  Max = {4, 1, 2} 
Job sequence {5, #, #, #, 3} 

Min = {2, 4}  Max = {4, 2} 
Job sequence {5, 1, #, #, 3} 

Min = {2}  MAX = {2} 
Job sequence {5, 1, #, 4, 3} 

Min = {}  MAX = {} 
Job sequence {5, 1, 2, 4, 3} Initial job sequence 𝜋 



Generating the initial job 
sequence (𝜋) 

function createInitialSequence{(* creates the initial job sequence*) 
 
 Max ← list of jobs ordered in non-increasing order of their maximum 
processing times; 
 Min ← list of jobs ordered in non-decreasing order of their minimum 
processing times; 
 s ← (#, #, . . . , #, #); (* empty sequence of place-holders *) 
 for (i from 1 to ⌊n/2⌋){ 
  j ← first element of Min; 
  s[i] ← j; 
  remove j from both Max and Min lists; 
  j ← first element of Max; 
  s[n + 1 − i] ← j; 
  remove j from both Max and Min lists; 
 } 
 if (n is odd) assign the unassigned job to s[⌊n/2⌋ + 1]; 
 return s; 
} 



Neighbourhood search 

Two job sequences 𝜋1  and 𝜋2  are said to be 
neighbours (i.e., adjacent) if 𝜋2 can be constructed 
from 𝜋1 by interchanging the positions of exactly 
two jobs in 𝜋1.  

(1, 2, 3, 4, 5) and (1, 5, 3, 4, 2) are neighbours 
but 
(1 2 3 4 5) and (1, 3, 5, 2, 4) are not neighbours 



Neighbourhood search 

function createNeighbors(𝜋){ (* creates the neighbourhood of a given 
solution 𝜋*) 
 N ← ∅; 
  𝜋𝑛 ← 𝜋;  
 for (i from 1 to n − 1){ 
  for (j from i + 1 to n){ 
   swap jobs in the i-th and j-th position in 𝜋𝑛; 
   add a copy of 𝜋𝑛 thus formed to N; 
   swap back jobs in the i-th and j-th position in 𝜋𝑛; 
  } 
 } 
 return N; 
} 



Neighbourhood search 

algorithm neighbourhoodSearch{ 
 
 𝜋 ← createInitialSequence; 
 localOptFlag ← FALSE; 
 while (localOptFlag = FALSE){ 
  localOptFlag ← TRUE; 
  N ← createNeighbors(𝜋); 
   𝜋b ← solution in N with a minimum maximum deviation value;  
  if (𝜋b has a lower worst case deviation than 𝜋){ 
    𝜋 ← 𝜋b; 
   localOptFlag ← FALSE; 
  } (* if loop *) 
 } (* while loop *) 
 output 𝜋; 
} 



Computing deviations (Example) 

Suppose 𝜋 = 3, 1, 4, 2, 5  and 
𝑠 = {17, 5, 29, 12, 2}. 

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

SPT sequence = {5, 2, 4, 1, 3}  

SPT completion time = 5 ⋅ 2 + 4 ⋅ 5 + 3 ⋅ 12 + 2 ⋅
17 + 1 ⋅ 29 = 129  

Completion time for  𝜋 = 5 ⋅ 29 + 4 ⋅ 17 + 3 ⋅ 12 +
2 ⋅ 5 + 1 ⋅ 2 = 261  

Deviation  𝐶 𝜋, 𝑠 = 261 − 129 = 132.  



Computing maximum 
deviation 
• Computing exact values of maximum deviation is 

expensive. So we compute an approximate value of 
maximum deviation of a solution 𝜋 through local 
search on a neighbourhood of scenarios. 

• Based on our lemma, we need to look at only those 
scenarios in which the processing time of each 
of the jobs is either the minimum or the maximum 
in the set of its possible processing times.  



Computing maximum 
deviation 

• Two scenarios 𝑠1 and 𝑠2 are said to be neighbours (i.e., 
adjacent) if they differ in the processing time of exactly 
one of the jobs. One of the scenarios will have the 
processing time of that job at the minimum level, while 
the other will have the processing time at the maximum 
level.  

Job 1 {4, 10, 17} 
Job 2 {5, 7, 9} 
Job 3 {14, 17, 29} 
Job 4 {12, 15, 19} 
Job 5 {2, 4, 6} 

Scenarios {4, 5, 29, 19, 2} and {4, 9, 29, 19, 2} 
are neighbours but 
Scenarios {4, 5, 29, 19, 2} and {17, 5, 14, 19, 
6} are not. 

Assume a function deviationLocalSearch(𝜋, 𝑠) that computes an approximate value of the  
maximum deviation of sequence 𝜋 through local search, starting from scenario 𝑠. 



Computing maximum 
deviation 

function computeMaximumDeviation(𝜋){ (* returns an approximate value of the 
max. deviation of 𝜋 *) 
  
 Σ ← set of 9 randomly generated scenarios; 
 J1 ← set of the first ⌊n/2⌋ jobs in 𝜋; 
 J2 ← set of all jobs not in J1; 
 σ ← scenario with the processing times of all jobs in J1 set to their                           
                         maximum processing times and  all jobs in J2 set to their minimum  
                        processing times; 
 Σ ← Σ ∪ σ; (* Σ now has 10 scenarios *) 
 maxDeviation ← −1; (* this is guaranteed to be updated *) 
 for (each σ ∈ Σ){ 
  deviation ← deviationLocalSearch(s, σ); 
  if (deviation > maxDeviation) 
   maxDeviation ← deviation; 
 } 
 return maxDeviation; 
} 



Computational experiments 

• We used four sets of instances with 10 instances in each 
set for our experiments. 

• The four sets have problems with 𝑛 = 5, 10, 15, and 20 
respectively. 

• Each job in each instance has a set of three possible 
processing times (generated randomly). 

• Optimal job sequences could be computed using 
exhaustive enumeration for sets with 𝑛 = 5 and 𝑛 = 10 
only. 

• The maximum deviation values presented are obtained 
from computeMaximumDeviation. 



Computational experiments 
We report 

• Start: the maximum deviation value for the solution 
obtained by createInitialSequence. 

• End: the maximum deviation value of the solution output 
by neighborhoodSearch. 

• Impr. %: the percentage improvement of End over Start. 

• Locally optimal sequence: The sequence obtained by 
neighborhoodSearch. 



Results from the set 
with 𝑛 = 5 

Inst
. 

Start End Impr. 
% 

Locally optimal 
sequence 

1 374 188 49.73%  {2,0,3,4,1} 

2 357 281 21.29%  {3,0,4,2,1} 

3 293 263 10.24%  {4,0,1,2,3} 

4 299 227 24.08%  {0,1,3,4,2} 

5 232 136 41.38%  {1,4,3,2,0} 

6 342 336 1.75%  {3,4,0,2,1} 

7 118 118 0.00%  {0,3,2,4,1} 

8 122 122 0.00%  {4,2,3,1,0} 

9 128 107 16.41%  {0,2,3,1,4} 

10 168 96 42.86%  {2,3,1,0,4} 

Optimal 

Optimal 

Optimal sequence is {0,4,1,3,2}  
with maximum deviation 224. 



Results from the set 
with 𝑛 = 10 
Inst
. 

Start End Impr. 
% 

Locally optimal 
sequence 

1 742 463 37.60%  {5,0,9,6,3,2,4,1,7,8} 

2 821 668 18.64%  {4,8,6,1,0,7,2,9,5,3} 

3 537 249 53.63%  {6,2,9,7,0,5,8,3,1,4} 

4 952 444 53.36%  {5,6,2,8,0,3,7,9,1,4} 

5 661 411 37.82%  {3,1,2,7,6,4,9,0,5,8} 

6 1098 920 16.21%  {7,9,0,2,8,5,6,3,4,1} 

7 773 620 19.79%  {4,6,7,0,9,5,8,1,2,3} 

8 988 726 26.52%  {2,9,0,6,8,3,5,4,1,7} 

9 1362 972 28.63%  {4,6,7,0,8,5,9,3,2,1} 

10 657 471 28.31%  {4,0,3,6,7,9,8,5,2,1} 

Optimal 

Optimal 

Optimal sequence is 
{6,2,5,9,7,0,8,3,1,4} with 
maximum deviation 237. 



Results from the set 
with 𝑛 = 15 

Inst
. 

Start End Impr. 
% 

Locally optimal sequence 

1 1916 1457 23.96%  {12,1,14,0,10,5,2,7,13,11,6,4,9,8,3} 

2 2456 1841 25.04%  {0,1,6,7,14,5,2,3,13,8,12,10,11,9,4} 

3 2021 1434 29.05%  {3,8,12,2,4,13,11,9,6,0,5,7,1,10,14} 

4 1855 1388 25.18%  {3,12,10,5,6,11,9,7,8,1,0,2,14,13,4} 

5 1571 1045 33.48%  {10,13,3,2,9,5,6,0,12,4,14,7,11,1,8} 

6 3042 1850 39.18%  {1,11,4,12,13,7,2,9,8,5,10,6,0,14,3} 

7 2577 1862 27.75%  {1,5,0,4,8,12,6,7,14,10,11,2,13,9,3} 

8 1602 956 40.32%  {8,1,9,12,0,13,3,11,10,5,2,6,4,14,7} 

9 1518 901 40.65%  {6,13,1,0,11,8,5,7,2,3,12,9,10,14,4} 

10 2081 1457 29.99%  {12,10,4,0,14,8,7,6,5,11,3,9,13,1,2} 

Optimal sequences  
could not be  
computed for these  
instances. 



Results from the set 
with 𝑛 = 20 

Inst
. 

Start End Impr. 
% 

Locally optimal sequence 

1 3237 2087 35.53%  {18,1,13,7,14,2,11,17,3,19,5,9,6,0,16,4,10,8,12,15} 

2 5236 3526 32.66%  {3,18,17,4,1,12,14,15,8,7,9,10,6,16,19,0,2,11,13,5} 

3 3501 2567 26.68%  {16,13,7,15,4,1,9,8,17,6,0,19,2,18,14,10,5,11,12,3} 

4 4596 3344 27.24%  {14,2,5,7,3,0,18,16,9,11,12,1,10,8,19,15,17,6,13,4} 

5 3902 2887 26.01%  {5,7,15,13,14,16,1,19,11,17,10,12,8,2,9,18,6,3,0,4} 

6 4425 3434 22.40%  {5,13,15,18,6,3,12,1,17,10,0,19,14,11,8,4,9,7,16,2} 

7 4411 2734 38.02%  {7,17,4,0,15,18,10,19,16,5,2,12,1,14,6,13,3,8,9,11} 

8 3183 2232 29.88%  {3,19,17,10,14,18,0,9,6,13,8,2,1,7,4,16,12,15,11,5} 

9 3498 2443 30.16%  {6,7,11,9,16,1,18,2,5,3,13,4,0,17,8,10,12,19,15,14} 

10 3885 2453 36.86%  {6,13,9,1,17,14,11,16,19,4,12,7,10,0,8,5,18,3,15,2} 

Optimal 
sequences  
could not be  
computed for 
these  
instances. 



Future work 
• To completely characterize the worst-case scenario for a 

given job sequence. This will eliminate the need for 
searching the maximum deviation using 
deviationLocalSearch(𝜋, 𝑠). 

• To obtain a good upper bound for the problem and to 
compare the performance of our algorithm with this 
upper bound. 

• To extend the work when the scenario set is an arbitrary 
collection of the processing times of each job. 

• To consider weighted version of the problem described 
here and a few of its variants. 
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