
Relative robust total completion
time scheduling problem

on a single machine

Prabha Sharma
The NorthCap University
Gurugram, India

Sandeep Singh
The NorthCap University
Gurugram, India

Diptesh Ghosh
Indian Institute of Management
Ahmedabad, India

Minimizing completion times

We have a set of 𝑛 jobs {1, 2, … , 𝑛}.

The processing time of job 𝑗 is 𝑝𝑗.

Given a sequence 𝜋 = (𝜋 1 , 𝜋(2), … , 𝜋(𝑛)) of
jobs, the processing time for the sequence
is

𝐶 𝜋 = 𝑛 − 𝑖 + 1 𝑝𝜋(𝑖)
𝑛
𝑖=1 .

Our objective is to find a sequence that
minimizes 𝐶(𝜋).

Result:
The shortest processing time (SPT) rule generates an optimal sequence.

Uncertainties

• Yang and Yu suggest that uncertainties can happen due to many
reasons:
– Machine breakdown
– Non-availability of quality tools
– Unstable workforce
– Changes in the working environment
– Many other complex external factors

• Probability distributions are used to model some of the
uncertainties and expectations of the respective objective functions
are optimized.

• Processing times estimated based on statistical data.
• Drawbacks of such estimations:

– Variances can be large
– The probability distributions assumed may be inaccurate

 Yang, J., and G. Yu. “On the robust single machine scheduling problem.” Journal of Combinatorial

Optimization 6.1 (2002): 17-33.

Alternate approaches

• All values in a finite interval [𝑎𝑖 , 𝑏𝑖] for each job 𝑖 may
be taken as the valid processing times for each job.

• Most of the work in the literature has used interval
data.

• Kouvelis and Yu suggest a finite set of discrete values
for each job. The processing time for the job will be
chosen from among these values.

Kouvelis, P., and G. Yu. Robust discrete optimization and its applications. Vol. 14. Springer
Science & Business Media, 2013.

Problem formulation

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

• A scenario is obtained by assigning one of the
possible processing times to each of the jobs.

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6}

Problem formulation

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

• A scenario is obtained by assigning one of the
possible processing times to each of the jobs.

• The set of all scenarios is denoted by 𝑆 = {𝑠},
where 𝑠 is a scenario.

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6 }

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6}

Problem formulation

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

• A scenario is obtained by assigning one of the
possible processing times to each of the jobs.

• The set of all scenarios is denoted by 𝑆 = {𝑠},
where 𝑠 is a scenario.

• A job sequence is denoted by a permutation 𝜋.

E.g., 𝜋 = {3,1,4,2,5} meaning the job sequence is Job 3,
then Job 1, then Job 4, then Job 2, and then Job 5.

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6}

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6 }

Problem formulation

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

• A scenario is obtained by assigning one of the
possible processing times to each of the jobs.

• The set of all scenarios is denoted by 𝑆 = {𝑠},
where 𝑠 is a scenario.

• A job sequence is denoted by a permutation 𝜋.

• The completion time for a job sequence 𝜋 in

scenario 𝑠 is denoted as 𝐶(𝜋, 𝑠).
E.g., if 𝜋 = 3,1,4,2,5 and 𝑠 = {4, 7, 14, 15, 6} then
𝐶 𝜋, 𝑠 = 5 ⋅ 14 + 4 ⋅ 4 + 3 ⋅ 15 + 2 ⋅ 7 + 1 ⋅ 6 = 151.

E.g., 𝑆 = { 4, 5, 14, 12, 2 , 4, 5, 14, 12, 4 , … , 17, 9, 29, 19, 6 }

E.g., s = {Job 1: 10, Job 2: 5, Job 3: 29, Job 4: 12, Job 5: 6}

E.g., 𝜋 = {3,1,4,2,5} meaning the job sequence is Job 3, then Job
1, then Job 4, then Job 2, and then Job 5.

Problem formulation

• A scenario is obtained by assigning one of the
possible processing times to each of the jobs.

• The set of all scenarios is denoted by 𝑆 = {𝑠}, where
𝑠 is a scenario.

• A job sequence is denoted by a permutation 𝜋.

• The completion time for a job sequence 𝜋 in
scenario 𝑠 is denoted as 𝐶(𝜋, 𝑠).

Problem formulation

• The deviation for a job sequence 𝜋 in scenario 𝑠 is
𝑑(𝜋, 𝑠) = 𝐶 𝜋, 𝑠 − 𝐶∗(𝑠).

• The maximum deviation for a job sequence 𝜋 is
max
s∈𝑆

 {𝑑 𝜋, 𝑠 }.

• The scenario for which the 𝑑(𝜋, 𝑠) is a maximum
is called a worst-case scenario for 𝜋.

• The best (i.e., least) possible completion time for
any job sequence in scenario 𝑠 is denoted as 𝐶∗(𝑠).
The job sequence that has this completion time is
obtained by the SPT rule.

Problem formulation

The relative robust total completion time problem
with discrete data is that of finding a job
sequence 𝜋 for which the maximum deviation is
minimum.

min
𝜋
max
𝑠∈𝑆

𝑑(𝜋, 𝑠) = min
𝜋
max
𝑠∈𝑆

(𝐶 𝜋, 𝑠 − 𝐶∗ 𝑠)

About the problem
• Yang and Yu say that this robust objective is to

hedge against the worst-case scenario.

• They say that discrete sets of processing times best
capture the correlation among the processing
times of different jobs.

• Kouvelis and Yu show that the problem is NP-
complete even when 𝑆 = 2.

• Yang and Yu have designed an exact dynamic
programming algorithm and given two polynomial
time heuristics.

Yang, J., and G. Yu. “On the robust single machine scheduling problem.” Journal of Combinatorial

Optimization 6.1 (2002): 17-33.

Kouvelis, P., and G. Yu. Robust discrete optimization and its applications. Vol. 14. Springer Science & Business
Media, 2013.

A lemma

Lemma
For any job sequence 𝜋, its worst-case scenario will
either have the processing times of each of the jobs
at their maximum value or at their minimum value.

Implication:
If each job 𝑗 has 𝑘𝑗 possible processing time values,

this lemma reduces the effective size of
𝑆 from 𝑘𝑗

𝑛
𝑗=1 to 2𝑛.

A local search algorithm

Algorithm localSearch() {
 𝜋 ← an initial job sequence generated based
 on problem data;
 𝜋𝑜𝑢𝑡 ← solution generated by a neighborhood
 search procedure;
 output 𝜋𝑜𝑢𝑡;
}

Generating the initial job
sequence (𝜋)
Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

Min = {5, 1, 2, 4, 3} Max = {3, 4, 1, 2, 5}
Job sequence {#, #, #, #, #}

Min = {1, 2, 4, 3} Max = {3, 4, 1, 2}
Job sequence {5, #, #, #, #}

Min = {1, 2, 4} Max = {4, 1, 2}
Job sequence {5, #, #, #, 3}

Min = {2, 4} Max = {4, 2}
Job sequence {5, 1, #, #, 3}

Min = {2} MAX = {2}
Job sequence {5, 1, #, 4, 3}

Min = {} MAX = {}
Job sequence {5, 1, 2, 4, 3} Initial job sequence 𝜋

Generating the initial job
sequence (𝜋)

function createInitialSequence{(* creates the initial job sequence*)

 Max ← list of jobs ordered in non-increasing order of their maximum
processing times;
 Min ← list of jobs ordered in non-decreasing order of their minimum
processing times;
 s ← (#, #, . . . , #, #); (* empty sequence of place-holders *)
 for (i from 1 to ⌊n/2⌋){
 j ← first element of Min;
 s[i] ← j;
 remove j from both Max and Min lists;
 j ← first element of Max;
 s[n + 1 − i] ← j;
 remove j from both Max and Min lists;
 }
 if (n is odd) assign the unassigned job to s[⌊n/2⌋ + 1];
 return s;
}

Neighbourhood search

Two job sequences 𝜋1 and 𝜋2 are said to be
neighbours (i.e., adjacent) if 𝜋2 can be constructed
from 𝜋1 by interchanging the positions of exactly
two jobs in 𝜋1.

(1, 2, 3, 4, 5) and (1, 5, 3, 4, 2) are neighbours
but
(1 2 3 4 5) and (1, 3, 5, 2, 4) are not neighbours

Neighbourhood search

function createNeighbors(𝜋){ (* creates the neighbourhood of a given
solution 𝜋*)
 N ← ∅;
 𝜋𝑛 ← 𝜋;
 for (i from 1 to n − 1){
 for (j from i + 1 to n){
 swap jobs in the i-th and j-th position in 𝜋𝑛;
 add a copy of 𝜋𝑛 thus formed to N;
 swap back jobs in the i-th and j-th position in 𝜋𝑛;
 }
 }
 return N;
}

Neighbourhood search

algorithm neighbourhoodSearch{

 𝜋 ← createInitialSequence;
 localOptFlag ← FALSE;
 while (localOptFlag = FALSE){
 localOptFlag ← TRUE;
 N ← createNeighbors(𝜋);
 𝜋b ← solution in N with a minimum maximum deviation value;
 if (𝜋b has a lower worst case deviation than 𝜋){
 𝜋 ← 𝜋b;
 localOptFlag ← FALSE;
 } (* if loop *)
 } (* while loop *)
 output 𝜋;
}

Computing deviations (Example)

Suppose 𝜋 = 3, 1, 4, 2, 5 and
𝑠 = {17, 5, 29, 12, 2}.

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

SPT sequence = {5, 2, 4, 1, 3}

SPT completion time = 5 ⋅ 2 + 4 ⋅ 5 + 3 ⋅ 12 + 2 ⋅
17 + 1 ⋅ 29 = 129

Completion time for 𝜋 = 5 ⋅ 29 + 4 ⋅ 17 + 3 ⋅ 12 +
2 ⋅ 5 + 1 ⋅ 2 = 261

Deviation 𝐶 𝜋, 𝑠 = 261 − 129 = 132.

Computing maximum
deviation
• Computing exact values of maximum deviation is

expensive. So we compute an approximate value of
maximum deviation of a solution 𝜋 through local
search on a neighbourhood of scenarios.

• Based on our lemma, we need to look at only those
scenarios in which the processing time of each
of the jobs is either the minimum or the maximum
in the set of its possible processing times.

Computing maximum
deviation

• Two scenarios 𝑠1 and 𝑠2 are said to be neighbours (i.e.,
adjacent) if they differ in the processing time of exactly
one of the jobs. One of the scenarios will have the
processing time of that job at the minimum level, while
the other will have the processing time at the maximum
level.

Job 1 {4, 10, 17}
Job 2 {5, 7, 9}
Job 3 {14, 17, 29}
Job 4 {12, 15, 19}
Job 5 {2, 4, 6}

Scenarios {4, 5, 29, 19, 2} and {4, 9, 29, 19, 2}
are neighbours but
Scenarios {4, 5, 29, 19, 2} and {17, 5, 14, 19,
6} are not.

Assume a function deviationLocalSearch(𝜋, 𝑠) that computes an approximate value of the
maximum deviation of sequence 𝜋 through local search, starting from scenario 𝑠.

Computing maximum
deviation

function computeMaximumDeviation(𝜋){ (* returns an approximate value of the
max. deviation of 𝜋 *)

 Σ ← set of 9 randomly generated scenarios;
 J1 ← set of the first ⌊n/2⌋ jobs in 𝜋;
 J2 ← set of all jobs not in J1;
 σ ← scenario with the processing times of all jobs in J1 set to their
 maximum processing times and all jobs in J2 set to their minimum
 processing times;
 Σ ← Σ ∪ σ; (* Σ now has 10 scenarios *)
 maxDeviation ← −1; (* this is guaranteed to be updated *)
 for (each σ ∈ Σ){
 deviation ← deviationLocalSearch(s, σ);
 if (deviation > maxDeviation)
 maxDeviation ← deviation;
 }
 return maxDeviation;
}

Computational experiments

• We used four sets of instances with 10 instances in each
set for our experiments.

• The four sets have problems with 𝑛 = 5, 10, 15, and 20
respectively.

• Each job in each instance has a set of three possible
processing times (generated randomly).

• Optimal job sequences could be computed using
exhaustive enumeration for sets with 𝑛 = 5 and 𝑛 = 10
only.

• The maximum deviation values presented are obtained
from computeMaximumDeviation.

Computational experiments
We report

• Start: the maximum deviation value for the solution
obtained by createInitialSequence.

• End: the maximum deviation value of the solution output
by neighborhoodSearch.

• Impr. %: the percentage improvement of End over Start.

• Locally optimal sequence: The sequence obtained by
neighborhoodSearch.

Results from the set
with 𝑛 = 5

Inst
.

Start End Impr.
%

Locally optimal
sequence

1 374 188 49.73% {2,0,3,4,1}

2 357 281 21.29% {3,0,4,2,1}

3 293 263 10.24% {4,0,1,2,3}

4 299 227 24.08% {0,1,3,4,2}

5 232 136 41.38% {1,4,3,2,0}

6 342 336 1.75% {3,4,0,2,1}

7 118 118 0.00% {0,3,2,4,1}

8 122 122 0.00% {4,2,3,1,0}

9 128 107 16.41% {0,2,3,1,4}

10 168 96 42.86% {2,3,1,0,4}

Optimal

Optimal

Optimal sequence is {0,4,1,3,2}
with maximum deviation 224.

Results from the set
with 𝑛 = 10
Inst
.

Start End Impr.
%

Locally optimal
sequence

1 742 463 37.60% {5,0,9,6,3,2,4,1,7,8}

2 821 668 18.64% {4,8,6,1,0,7,2,9,5,3}

3 537 249 53.63% {6,2,9,7,0,5,8,3,1,4}

4 952 444 53.36% {5,6,2,8,0,3,7,9,1,4}

5 661 411 37.82% {3,1,2,7,6,4,9,0,5,8}

6 1098 920 16.21% {7,9,0,2,8,5,6,3,4,1}

7 773 620 19.79% {4,6,7,0,9,5,8,1,2,3}

8 988 726 26.52% {2,9,0,6,8,3,5,4,1,7}

9 1362 972 28.63% {4,6,7,0,8,5,9,3,2,1}

10 657 471 28.31% {4,0,3,6,7,9,8,5,2,1}

Optimal

Optimal

Optimal sequence is
{6,2,5,9,7,0,8,3,1,4} with
maximum deviation 237.

Results from the set
with 𝑛 = 15

Inst
.

Start End Impr.
%

Locally optimal sequence

1 1916 1457 23.96% {12,1,14,0,10,5,2,7,13,11,6,4,9,8,3}

2 2456 1841 25.04% {0,1,6,7,14,5,2,3,13,8,12,10,11,9,4}

3 2021 1434 29.05% {3,8,12,2,4,13,11,9,6,0,5,7,1,10,14}

4 1855 1388 25.18% {3,12,10,5,6,11,9,7,8,1,0,2,14,13,4}

5 1571 1045 33.48% {10,13,3,2,9,5,6,0,12,4,14,7,11,1,8}

6 3042 1850 39.18% {1,11,4,12,13,7,2,9,8,5,10,6,0,14,3}

7 2577 1862 27.75% {1,5,0,4,8,12,6,7,14,10,11,2,13,9,3}

8 1602 956 40.32% {8,1,9,12,0,13,3,11,10,5,2,6,4,14,7}

9 1518 901 40.65% {6,13,1,0,11,8,5,7,2,3,12,9,10,14,4}

10 2081 1457 29.99% {12,10,4,0,14,8,7,6,5,11,3,9,13,1,2}

Optimal sequences
could not be
computed for these
instances.

Results from the set
with 𝑛 = 20

Inst
.

Start End Impr.
%

Locally optimal sequence

1 3237 2087 35.53% {18,1,13,7,14,2,11,17,3,19,5,9,6,0,16,4,10,8,12,15}

2 5236 3526 32.66% {3,18,17,4,1,12,14,15,8,7,9,10,6,16,19,0,2,11,13,5}

3 3501 2567 26.68% {16,13,7,15,4,1,9,8,17,6,0,19,2,18,14,10,5,11,12,3}

4 4596 3344 27.24% {14,2,5,7,3,0,18,16,9,11,12,1,10,8,19,15,17,6,13,4}

5 3902 2887 26.01% {5,7,15,13,14,16,1,19,11,17,10,12,8,2,9,18,6,3,0,4}

6 4425 3434 22.40% {5,13,15,18,6,3,12,1,17,10,0,19,14,11,8,4,9,7,16,2}

7 4411 2734 38.02% {7,17,4,0,15,18,10,19,16,5,2,12,1,14,6,13,3,8,9,11}

8 3183 2232 29.88% {3,19,17,10,14,18,0,9,6,13,8,2,1,7,4,16,12,15,11,5}

9 3498 2443 30.16% {6,7,11,9,16,1,18,2,5,3,13,4,0,17,8,10,12,19,15,14}

10 3885 2453 36.86% {6,13,9,1,17,14,11,16,19,4,12,7,10,0,8,5,18,3,15,2}

Optimal
sequences
could not be
computed for
these
instances.

Future work
• To completely characterize the worst-case scenario for a

given job sequence. This will eliminate the need for
searching the maximum deviation using
deviationLocalSearch(𝜋, 𝑠).

• To obtain a good upper bound for the problem and to
compare the performance of our algorithm with this
upper bound.

• To extend the work when the scenario set is an arbitrary
collection of the processing times of each job.

• To consider weighted version of the problem described
here and a few of its variants.

References

1. Yang, Jian, and Gang Yu. "On the robust single machine
scheduling problem." Journal of Combinatorial Optimization
6.1 (2002): 17-33.

2. Kouvelis, Panos, and Gang Yu. Robust discrete optimization
and its applications. Vol. 14. Springer Science & Business
Media, 2013.

3. Daniels, Richard L., and Panagiotis Kouvelis. "Robust
scheduling to hedge against processing time uncertainty in
single-stage production." Management Science 41.2 (1995):
363-376.

4. Du, Charles, and Michael Pinedo. "A note on minimizing the
expected makespan in flowshops subject to breakdowns."
Naval Research Logistics (NRL) 42.8 (1995): 1251-1262.

